

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

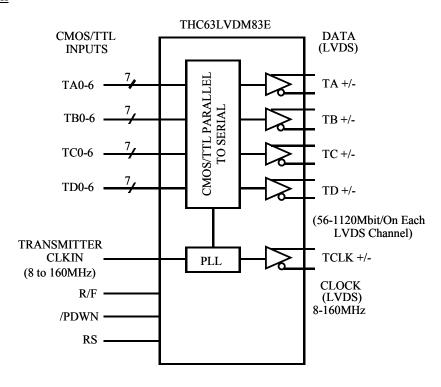
To Our Customers

CEL continues to offer industry leading semiconductor products from Japan. We are pleased to add new communication products from THine Electronics to our product portfolio.

THC63LVDM83E

SMALL PACKAGE / 24Bit COLOR LVDS TRANSMITTER

General Description


The THC63LVDM83E transmitter is designed to support pixel data transmission between Host and Flat Panel Display up to 1080p/WUXGA resolutions.

The THC63LVDM83E converts 28bits of CMOS/TTL data into LVDS (Low Voltage Differential Signaling) data stream. The transmitter can be programmed for rising edge or falling edge clocks through a dedicated pin. At a transmit clock frequency of 160MHz, 24bits of RGB data and 4bits of timing and control data (HSYNC, VSYNC, DE, CONT1) are transmitted at an effective rate of 1120Mbps per LVDS channel.

Features

- ·49pin 0.65mm pitch VFBGA Package
- Wide dot clock range: 8-160MHz suited for TV Signal: NTSC(12.27MHz) - 1080p(148.5MHz) PC Signal: QVGA(8MHz) - WUXGA(154MHz)
- •1.2V to 3.3V CMOS inputs are supported.
- •LVDS swing is reducible by RS-pin to reduce EMI and power consumption.
- •PLL requires no external components.
- ·On chip jitter filtering.
- · Spread Spectrum Clock input tolerant.
- · Power down mode.
- Input clock triggering edge is selectable by R/F-pin.
- Operates from a Single 3.3V Supply and 110mW(typ.) at 75MHz.

Block Diagram

Ball Out

TOP VIEW

	1	2	3	4	5	6	7	<u> </u>
A	TA6	TA5	TA4	TA3	TA2	TA1	TA0	A
В	TB4	TD3	TD2	TD1	TD0	TA-	TA+	В
С	TB5	ТВ0	GND	VCC	RS	ТВ-	TB+	С
D	TB6	TB1	GND	LVDS VCC	LVDS VCC	TC-	TC+	D
Е	TC0	TB2	GND	PLL VCC	R/F	TCLK-	TCLK+	Е
F	TC1	TB3	TD4	TD5	TD6	TD-	TD+	F
G	TC2	TC3	TC4	TC5	TC6	CLKIN	/PDWN	G
	1	2	3	4	5	6	7	

Pin Description

Pin Name	Pin #	Direction	Type		Descriptio	n
TA+, TA-	B7, B6					
TB+, TB-	C7, C6			LVDS Data Ou	t	
TC+, TC-	D7, D6	Output	LVDS	LVD3 Data Ou	··	
TD+, TD-	F7, F6	Output	LVDS			
TCLK+,	E7, E6			LVDS Clock O	nit	
TCLK-				EVBS Clock o	<u> </u>	
TA0 ~ TA6	A7,A6,A5,A4,A3,A2,A1					
TB0 ~ TB6	C2,D2,E2,F2,B1,C1,D1			Pixel Data Inpu	ıt	
TC0 ~ TC6	E1,F1,G1,G2,G3,G4,G5			l r		
TD0 ~ TD6	B5,B4,B3,B2,F3,F4,F5			TT 31 1		
/PDWN	G7			H : Normal ope		11' 7)
RS	C5				n (all outputs a	
KS	C3			LVDS swing 1		
		.	LV-CMOS	RS	LVDS	Small Swing
		Input	/TTL	77.00	Swing	Input Support
				VCC	350mV	N/A
				0.6 ~ 1.4V	350mV	RS=VREF
				GND	200mV	N/A
				VREF is Inpu		
R/F	E5			Input Clock Tri		Select
				H : Rising edge		
CLUDI	0.6			L : Falling edge	2	
CLKIN	G6			Input Clock	Dia Car CMO	0 ' 1 1'-'-1
VCC	C4				Pin for CMO	S input and digital
GND	C3,D3,E3	Power		circuit. Ground Pins fo	r Common	
LVDS VCC	D4,D5	rowei		Power Supply 1		Outputs
PLL VCC	E4			Power Supply 1		
I LL VCC	L)4			1 ower suppry	III IOI I LL CII	Cuit.

Absolute Maximum Ratings

Parameter	Min	Max	Units
Supply Voltage	-0.3	+4.0	V
LV-CMOS/TTL Input Voltage	-0.3	VCC + 0.3	V
LVDS Transmitter Output Voltage	-0.3	VCC + 0.3	V
Output Current	-30	30	mA
Junction Temperature		+125	°C
Storage Temperature	-55	+125	°C
Reflow Peak Temperature		+260	°C
Reflow Peak Temperature Time		10	sec
Maximum Power Dissipation @+25°C		1.2	W

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
	All Supply Voltage	3.0	3.3	3.6	V
Ta	Operating Ambient Temperature	0	25	+70	°C
	Clock Frequency	8		160	MHz

Power Consumption

 $VCC = 3.0 \sim 3.6 \text{V}, Ta = 0 \sim +70 ^{\circ}\text{C}$

Symbol	Parameter	Conditions	Typ*	Max	Units
	LVDS Transmitter Operating Current	RL=100Ω, CL=5pF, f=85MHz RS=VCC, (RS=GND)	42 (34)		mA
T	Gray Scale Pattern 16 (Fig.1)	RL=100Ω, CL=5pF, f=160MHz RS=VCC, (RS=GND)	58 (50)		mA
I_{TCCW}	LVDS Transmitter Operating Current	RL=100Ω, CL=5pF, f=85MHz RS=VCC, (RS=GND)	45 (36)	67 (56)	mA
	Worst Case Pattern (Fig.2)	RL=100Ω, CL=5pF, f=160MHz RS=VCC, (RS=GND)	63 (55)	92 (80)	mA
I _{TCCS}	LVDS Transmitter Power Down Current			10	μА

^{*}Typ values are at VCC=3.3V, Ta = +25°C

16 Grayscale Pattern

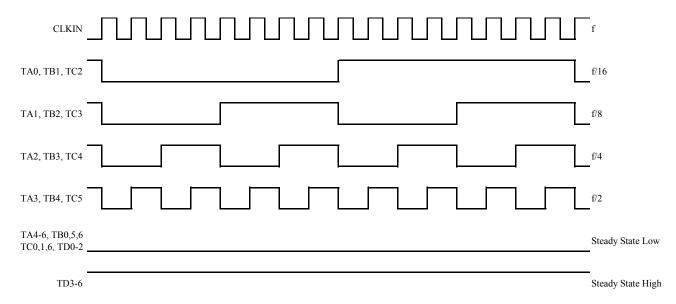


Fig.1 16 Grayscale Pattern

Worst Case Pattern

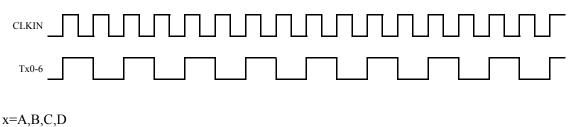


Fig.2 Worst Case Pattern

Electrical Characteristics

LV-CMOS/TTL DC Specifications

 $VCC = 3.0 \sim 3.6 \text{V}, Ta = 0 \sim +70 ^{\circ}\text{C}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
$ m V_{IH}$	High Level Input Voltage	RS=VCC or GND	2.0		VCC	V
$ m V_{IL}$	Low Level Input Voltage	RS=VCC or GND	GND		0.8	V
V_{DDQ}^{-1}	Small Swing Voltage		1.2		2.8	V
$V_{ m REF}$	Input Reference Voltage	Small Swing (RS=V _{DDQ} /2)		$V_{\rm DDQ}/2$		
V_{SH}^{2}	Small Swing High Level Input Voltage	$V_{REF} = V_{DDQ}/2$	$V_{DDQ}/2 + 100 \text{mV}$			V
$V_{\rm SL}^{2}$	Small Swing Low Level Input Voltage	$V_{REF} = V_{DDQ}/2$			$V_{\rm DDQ}/2$ $-100 {\rm mV}$	V
I_{INC}	Input Current	$GND \le V_{IN} \le VCC$			±10	μΑ

^{*}Typ values are at VCC=3.3V, Ta = +25°C

Notes: $^{1}V_{DDQ}$ voltage defines max voltage of small swing input. It is not an actual input voltage.

LVDS Transmitter DC Specifications

 $VCC = 3.0 \sim 3.6 \text{V}, Ta = 0 \sim +70 ^{\circ}\text{C}$

Symbol	Parameter	Co	nditions	Min	Тур	Max	Units
VOD	Differential Output Voltage	RL=100Ω	Normal swing RS=VCC	250	350	450	mV
	Differential Output voltage	KL-10022	Reduced swing RS=GND	120	200	300	mV
ΔVOD	Change in VOD between complementary output states					35	mV
VOC	Common Mode Voltage	RL=100Ω		1.125	1.25	1.375	V
ΔVOC	Change in VOC between complementary output states					35	mV
I_{OS}	Output Short Circuit Current	V_{OUT} =GND, RL=100 Ω				-24	mA
I_{OZ}	Output TRI-STATE Current		VN=GND, GND to VCC			±10	μА

^{*}Typ values are at VCC=3.3V, Ta = +25°C

² Small swing signal is applied to TA0-6, TB0-6, TC0-6, TD0-6 and CLKIN.

LV-CMOS/TTL	& LVDS Transmi	tter AC Specification	mc
		iidi AC Sbecilicain	7115

VCC =	3	$0\sim3$	6V	$T_2 =$	$0\sim +'$	70°C
v CC -	Э.	.ບ∼ລ).U V.	ra-	$v\sim \tau$	\prime \cup

	ros, rre & E v Es rrunshineter rre spec		,	2.0 2.0 1, 24	0 ,00
Symbol	Parameter	Min	Тур	Max	Units
t_{TCIT}	CLK IN Transition Time			5.0	ns
t_{TCP}	CLK IN Period	6.25	T	125	ns
t_{TCH}	CLK IN High Time	0.35T	0.5T	0.65T	ns
t_{TCL}	CLK IN Low Time	0.35T	0.5T	0.65T	ns
t_{TCD}	CLK IN to TCLK+/- Delay		3T		ns
t_{TS}	LV-CMOS/TTL Data Setup to CLK IN	2.0			ns
t_{TH}	LV-CMOS/TTL Data Hold from CLK IN	0.0			ns
t_{LVT}	LVDS Transition Time		0.6	1.5	ns
t_{TOP1}	Output Data Position0 (T=6.25ns ~ 20ns)	-0.15	0.0	+0.15	ns
t_{Top0}	Output Data Position1 (T=6.25ns ~ 20ns)	T/7-0.15	T/7	T/7+0.15	ns
t_{Top6}	Output Data Position2 (T=6.25ns ~ 20ns)	2T/7-0.15	2T/7	2T/7+0.15	ns
t_{Top5}	Output Data Position3 (T=6.25ns ~ 20ns)	3T/7-0.15	3T/7	3T/7+0.15	ns
t_{Top4}	Output Data Position4 (T=6.25ns ~ 20ns)	4T/7-0.15	4T/7	4T/7+0.15	ns
t_{Top3}	Output Data Position5 (T=6.25ns ~ 20ns)	5T/7-0.15	5T/7	5T/7+0.15	ns
t_{Top2}	Output Data Position6 (T=6.25ns ~ 20ns)	6T/7-0.15	6T/7	6T/7+0.15	ns
t_{TPLL}	Phase Lock Loop Set			10.0	ms
У Т 1	AMOG 2 2M T + 250G				

^{*}Typ values are at VCC=3.3V, Ta = +25°C

LV-CMOS/TTL Input

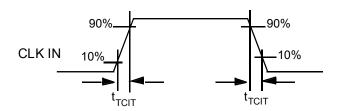
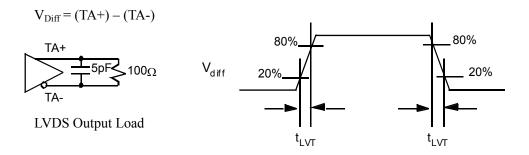
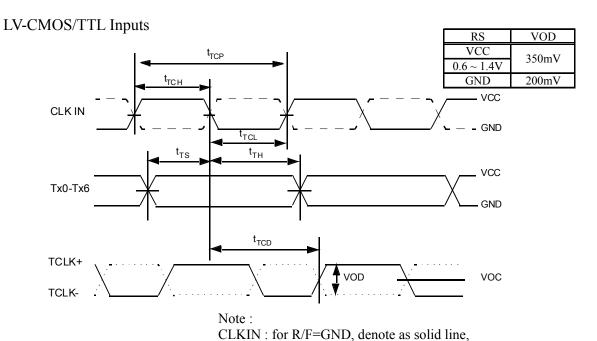
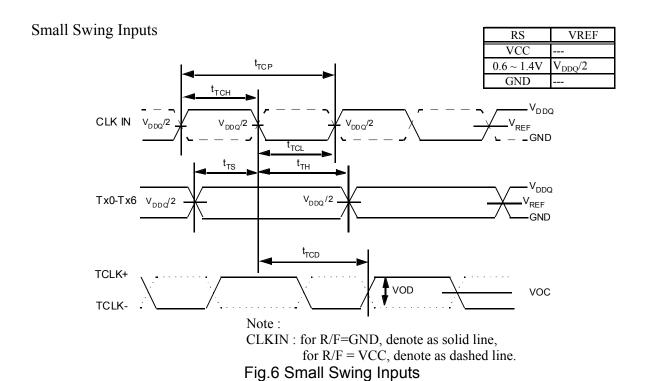


Fig.3 CLKIN Transmission Time

LVDS Output


Fig.4 LVDS Output Load and Transmission Time

AC Timing Diagrams

 $for \ R/F = VCC, denote \ as \ dashed \ line.$ Fig.5 CLKIN Period, High/Low Time, Setup/Hold Timing

LVDS Output

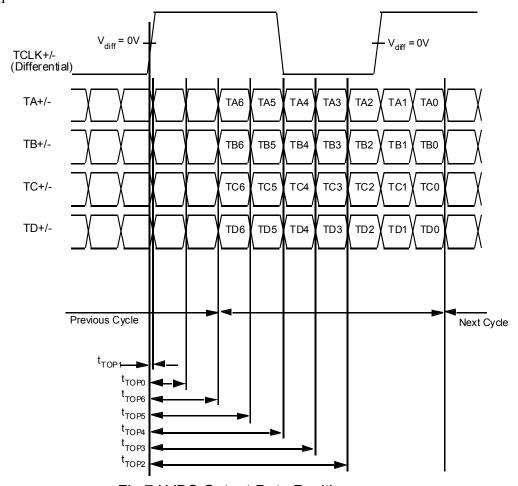
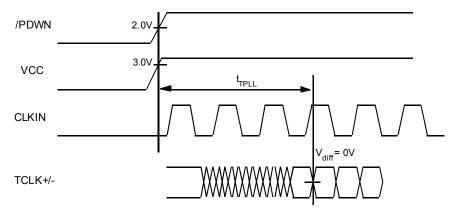
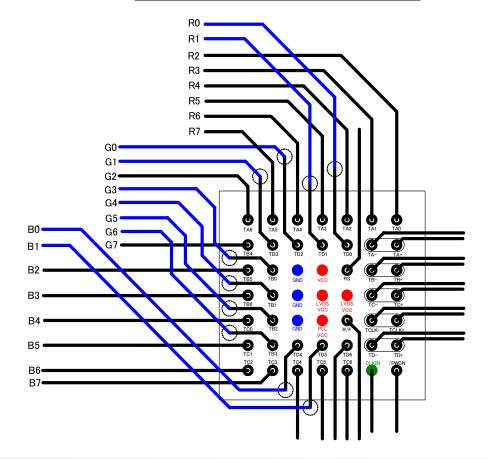


Fig.7 LVDS Output Data Position

Phase Lock Loop Set Time




Fig.8 PLL Lock Set Time

Board Layout Example

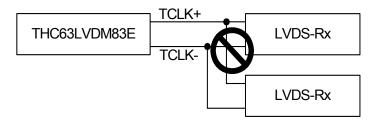
TOP VIEW

	1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	1	2	3	4	5	6	7		
A	TA6	TA5	TA4	TA3	TA2	TAI	TA0	A	
В	TB4	TD3	TD2	TD1	TD0	TA-	TA+	В	
С	TB5	TB0	GND	VCC	RS	ТВ-	TB+	С	
D	TB6	TB1	GND	LVDS VCC	LVDS VCC	TC-	TC+	D	
Е	TC0	TB2	GND	PLL VCC	R/F	TCLK-	TCLK+	Е	
F	TC1	TB3	TD4	TD5	TD6	TD-	TD+	F	
G	TC2	TC3	TC4	TC5	TC6	CLKIN	/PDWN	G	
	1	2	3	4	5	6	7		

10

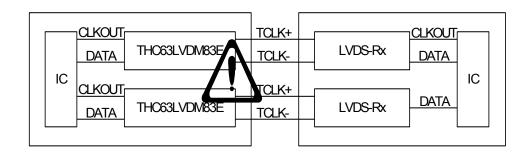
Note

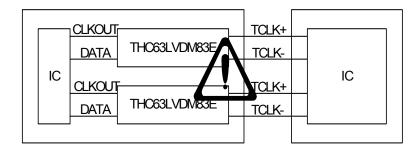
1) Cable Connection and Disconnection


Don't connect and disconnect the LVDS cable, when the power is supplied to the system.

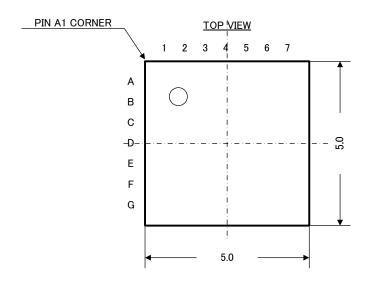
2) GND Connection

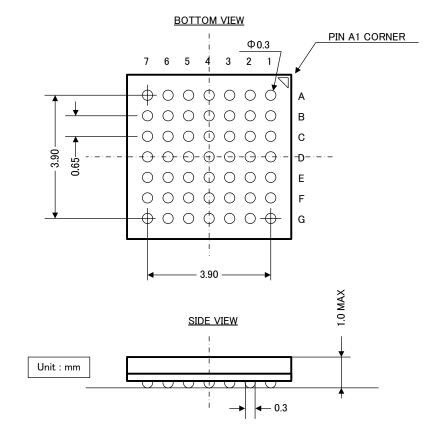
Connect the each GND of the PCB which THC63LVDM83E and LVDS-Rx on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible.


3) Multi Drop Connection


Multi drop connection is not recommended.

4) Asynchronous use


Asynchronous using such as following systems are not recommended.



Package

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. We are not responsible for possible errors and omissions in this material. Please note if errors or omissions should be found in this material, we may not be able to correct them immediately.
- 3. This material contains our copy right, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without our prior permission is prohibited.
- 4. Note that if infringement of any third party's industrial ownership should occur by using this product, we will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5. This product is presumed to be used for general electric equipment, not for the applications which require very high reliability (including medical equipment directly concerning people's life, aerospace equipment, or nuclear control equipment). Also, when using this product for the equipment concerned with the control and safety of the transportation means, the traffic signal equipment, or various Types of safety equipment, please do it after applying appropriate measures to the product.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. Please note that this product is not designed to be radiation-proof.
- 8. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Control Law.

THine Electronics, Inc.

sales@thine.co.jp