

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

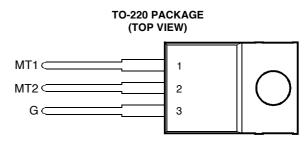
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China




BOURNS®

- High Current Triacs
- 12 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT
Repetitive peak off-state voltage (see Note 1)	TIC236D		400	
	TIC236M	M	600	V
	TIC236S	V_{DRM}	700	V
	TIC236N		800	
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)			12	Α
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			100	Α
Peak gate current			±1	Α
Operating case temperature range			-40 to +110	°C
Storage temperature range			-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds			230	°C

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 300 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse volta ge and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

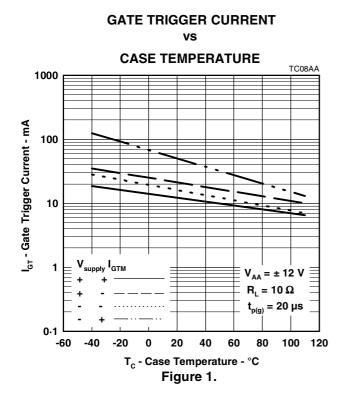
PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = Rated V _{DRM}	I _G = 0	T _C = 110°C			±2	mA
I _{GT}		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		12	50	mA
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-19	-50	
	current	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-16	-50	ША
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		34		
V _{GT}		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		8.0	2	V
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.8	-2	
	voltage	$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.8	-2	
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		0.9	2	
V _T	On-state voltage	I _{TM} = ±17 A	$I_G = 50 \text{ mA}$	(see Note 4)		±1.4	±2.1	V

[†] All voltages are with respect to Main Terminal 1.

NOTE 4: This parameter must be measured using pulse techniques, t_p = < 1 ms, duty cycle < 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

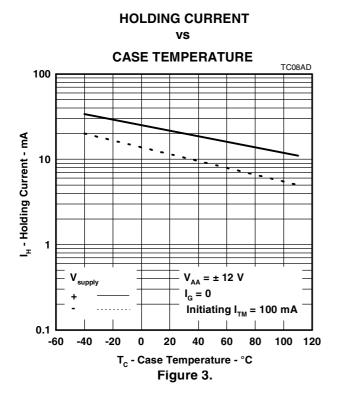

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
1	Holding current	V _{supply} = +12 V†	I _G = 0	Init' I _{TM} = 100 mA		22	40	mA
lн	riolaling carrent	$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$		-12	-40	ША
IL	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ (see Note 5)				80	mA	
	Latering current	$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	(See Note 3)				-80	ША
dv/dt	Critical rate of rise of	V _D = Rated V _D	I _G = 0	T _C = 110°C		±400		V/µs
	off-state voltage					±400		ν/μ5
dv/dt _(c)	Critical rise of	$V_D = Rated V_D$		$T_C = 80^{\circ}C$	±1.2	±9		V/µs
	commutation voltage	$di/dt = 0.5 I_{T(RMS)}/ms$		$I_T = 1.4 I_{T(RMS)}$		±3		ν/μδ
di/dt	Critical rate of rise of	$V_D = Rated V_D$	I _{GT} = 50 mA	T _C = 110°C		±100		A/µs
	on -state current	di _G /dt = 50 mA/μs				±100		-Α/μδ

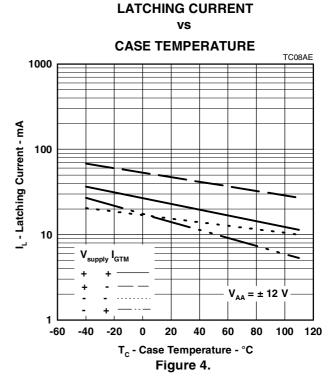
[†] All voltages are with respect to Main Terminal 1.

thermal characteristics

PARAMETER		MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			2	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

TYPICAL CHARACTERISTICS


vs **CASE TEMPERATURE** TC08AB 10 V_{GT} - Gate Trigger Voltage - V supply I_{GTM} $V_{AA} = \pm 12 V$ $R_1 = 10 \Omega$ t_{p(g)} = 20 μs -60 -40 -20 0 20 40 60 80 100 T_c - Case Temperature - °C Figure 2.


GATE TRIGGER VOLTAGE

PRODUCT INFORMATION

NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

TYPICAL CHARACTERISTICS

