imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1. General description

The TJA1083 FlexRay node transceiver is compliant with the FlexRay Electrical Physical Layer specification V3.0.1 (see <u>Ref. 1</u>). In order to meet JASPAR the equirements, it implements the 'Increased voltage amplitude transmitter' functional class. It is primarily intended for communication systems operating at between 2.5 Mbit/s and 10 Mbit/s, and provides an advanced interface between the protocol controller and the physical bus in a FlexRay network. The TJA1083 offers an optimized solution for Electronic Control Unit (ECU) applications that do not need enhanced power management and are typically switched by the ignition or activated by a dedicated wake-up line.

The TJA1083 provides a differential transmit capability to the network and a differential receive capability to the FlexRay controller. It offers excellent ElectroMagnetic Compatibility (EMC) performance as well as high ElectroStatic Discharge (ESD) protection.

The TJA1083 actively monitors system performance using dedicated error and status information (readable by any microcontroller), as well as internal voltage and temperature monitoring.

2. Features and benefits

2.1 Optimized for time triggered communication systems

- Compliant with Electrical Physical Layer specification V3.0.1
- Meets JASPAR requirements as described in the 'Bus driver increased voltage amplitude transmitter' functional class
- Automotive product qualification in accordance with AEC-Q100
- Data transfer rates from 2.5 Mbit/s to 10 Mbit/s
- Supports 60 ns minimum bit time at 400 mV differential input voltage
- Very low ElectroMagnetic Emission (EME) to support unshielded cable
- Differential receiver with high common-mode range for excellent ElectroMagnetic Immunity (EMI)
- Auto I/O level adaptation to host controller supply voltage V_{IO}
- Can be used in 14 V, 24 V and 48 V powered systems
- Instant transmitter shut-down interface (BGE pin)

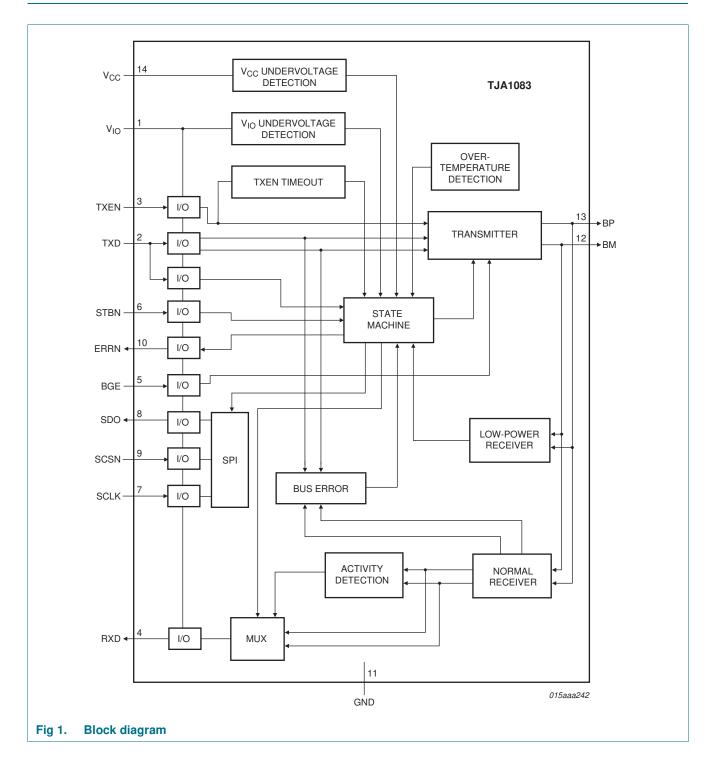
2.2 Low-power management

- Very low current consumption in Standby mode
- Remote wake-up via a wake-up pattern or dedicated FlexRay data frames on the bus lines

2.3 Diagnosis and robustness

- Enhanced supply voltage monitoring for V_{CC} and V_{IO}
- Two error diagnosis modes:
 - ◆ Status register readout via the Serial Peripheral Interface (SPI)
 - Simple error indication via pin ERRN
- Overtemperature detection
- Short-circuit detection on bus lines
- Power-on flag
- Clamping diagnosis for pins TXEN and BGE
- Bus pins protected against ±6 kV ESD pulses according to IEC61000-4-2 and ±8 kV according to HBM
- Bus pins protected against transients in automotive environment (according to ISO 7637 class C)
- Bus pins short-circuit proof to battery voltage (14 V, 24 V and 48 V) and ground
- Maximum differential voltage between pins BP or BM and any other pin of $\pm 60 \text{ V}$
- Bus lines remain passive when the transceiver is not powered
- No reverse currents from the digital input pins to V_{IO} or V_{CC} when the transceiver is not powered

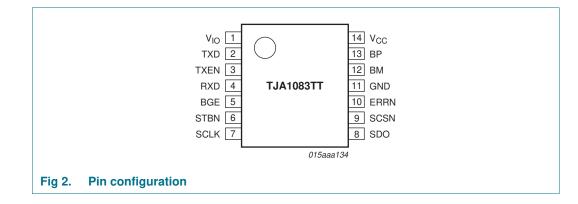
2.4 Functional classes according to FlexRay Electrical Physical Layer specification V3.0.1


- Bus driver increased voltage amplitude transmitter
- Bus driver bus guardian control interface
- Bus driver logic level adaptation
- Bus driver remote wake-up

3. Ordering information

Table 1.Ordering information

Type number	Package				
	Name	Description	Version		
TJA1083TT	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1		


4. Block diagram

TJA1083 Product data sheet

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Туре	Description
V _{IO}	1	Р	supply voltage for V_{IO} voltage level adaptation
TXD	2	I	transmit data input; internal pull-down
TXEN	3	I	transmitter enable input; when HIGH transmitter disabled; internal pull-up
RXD	4	0	receive data output
BGE	5	Ι	bus guardian enable input; when LOW transmitter disabled; internal pull-down
STBN	6	I	mode control input; transceiver in Normal mode when HIGH; internal pull-down
SCLK	7	I	SPI clock signal; internal pull-up
SDO	8	0	SPI data output
SCSN	9	I	SPI chip select input; internal pull-up/pull-down
ERRN	10	0	error diagnosis output and wake-up indication
GND	11	Ρ	ground
BM	12	I/O	bus line minus
BP	13	I/O	bus line plus
V _{CC}	14	Р	supply voltage (+5 V)

6. Functional description

6.1 Power modes

The TJA1083 features three power modes: Normal, Standby and Power-off. Normal and Standby modes can be selected via the STBN input (HIGH for Normal mode) once the transceiver has been powered up. See <u>Table 3</u> for a detailed description of pin signaling in the three power modes.

IUAIUUU	TJ	A1	083
---------	----	-----------	-----

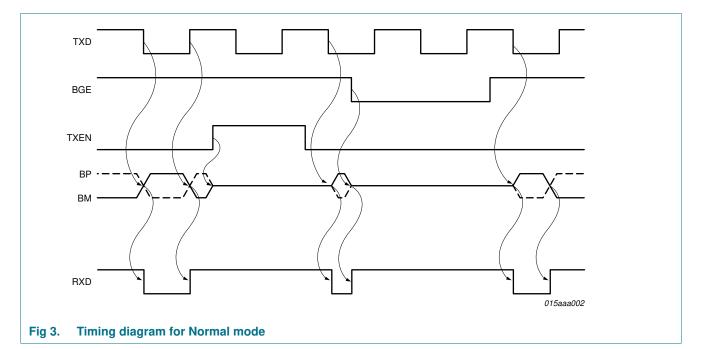
Mode	STRN	UV at	UV	ERRN	1	RXD		SDO	Biasing	UV-det	Trans-	Low-
Mode	STBN	V _{IO}	at V _{CC}		HIGH	LOW	HIGH	300	BP, BM	UV-det	mitter	power receiver
Normal	HIGH	no	no	error flag set	error flag reset	bus DATA _0	bus DATA_1 or idle	high- impedance (in simple	V _{CC} / 2		d enabled	enabled <mark>[1]</mark>
Standby	LOW	no	no	wake flag set	wake flag reset	wake flag set	wake flag reset	error indication mode) or enabled	GND		disabled	enabled <mark>[2]</mark>
	LOW	no	yes <mark>[3]</mark>	wake flag set ^[4]	wake flag reset ^[4]	wake flag set <mark>^[4]</mark>	wake flag reset ^[4]	(in SPI mode)				disabled
	HIGH	no	yes <mark>[3]</mark>	error flag set	error flag reset	wake flag set <mark>^[4]</mark>	wake flag reset ^[4]					
	Х	yes <mark>[5]</mark>	no	LOW		LOW		high-				enabled <mark>[2]</mark>
	Х	yes <mark>[5]</mark>	yes <mark>[3]</mark>	LOW		LOW		impedance				disabled
Power-off	Х	χ <u>[5]</u>	yes	high- imped	lance	HIGH			GND ^[6]	disabled		disabled

Table 3. Pin signaling in the different power modes

[1] The wake flag is set if a valid wake-up event is detected while switching to Standby mode.

[2] The wake flag is set if a valid wake-up event is detected.

 $[3] \quad V_{uvd(VCC)} > V_{CC} > V_{th(det)POR}.$


[4] Pins ERRN and RXD reflect the state of the wake flag prior to the V_{CC} undervoltage event.

[5] The internal signals at pins STBN, BGE and TXD are set LOW; the internal signals at pins TXEN, SCLK and SCSN are set HIGH.

[6] Except when $V_{CC} = 0$; in this case BP and BM are floating.

6.1.1 Normal mode

In Normal mode, the transceiver transmits and receives data via the bus lines BP and BM. The transmitter and the normal receiver are enabled, along with the undervoltage detection function. The timing diagram for Normal mode is illustrated in Figure 3.

<u>Table 4</u> describes the behavior of the transmitter in Normal mode, when the temperature flag (TEMP HIGH) is not set and with no time-out on pin TXEN. Transmitter behavior is illustrated in Figure 13.

BGE	TXEN	TXD	Bus state	Transmitter
L	Х	Х	idle	transmitter is disabled
Х	Н	Х	idle	transmitter is disabled
Η	L	Η	DATA_1	transmitter is enabled; the bus lines are actively driven; BP is driven HIGH and BM is driven LOW
Η	L	L	DATA_0	transmitter is enabled; the bus lines are actively driven; BP is driven LOW and BM is driven HIGH

Table 4. Transmitter operation in Normal mode

The transmitter is activated during the first LOW level on pin TXD while pin BGE is HIGH and pin TXEN is LOW.

In Normal mode, the normal receiver output is connected directly to pin RXD (see <u>Table 5</u>). Receiver behavior is illustrated in <u>Figure 14</u>.

Bus state	RXD
DATA_0	L
DATA_1	Н
idle	Н

When V_{IO} and V_{CC} are within their operating ranges, pin ERRN indicates the status of the error flag. See <u>Section 6.8</u> for a detailed description of error signaling in Normal mode.

TJA1083 Product data sheet

6.1.1.1 Bus activity and idle detection

In Normal mode, bus activity and bus idle are detected as follows:

- Bus activity is detected when the absolute differential voltage on the bus lines is higher than |V_{i(dif)det(act)}| for t_{det(act)(bus)}:
 - If the differential voltage on the bus lines is lower than V_{IL(dif)} after bus activity has been detected, pin RXD switches LOW.
 - If the differential voltage on the bus lines is higher than V_{IH(dif)} after bus activity has been detected, pin RXD remains HIGH.
- Bus idle is detected when the absolute differential voltage on the bus lines is lower than |V_{i(dif)det(act)}| for t_{det(idle)(bus)}. This results in pin RXD being switched HIGH or staying HIGH.

6.1.2 Standby mode

Standby mode is a low-power mode featuring very low current consumption. In Standby mode, the transceiver is unable to transmit or receive data since both the transmitter and the normal receiver are switched off. The low-power receiver is activated to monitor the bus for wake-up activity, provided an undervoltage has not been detected on pin V_{CC} .

The low-power receiver is deactivated if an undervoltage is detected on pin V_{CC} - with the result that the wake flag is not set if a wake-up pattern or dedicated data frame is received.

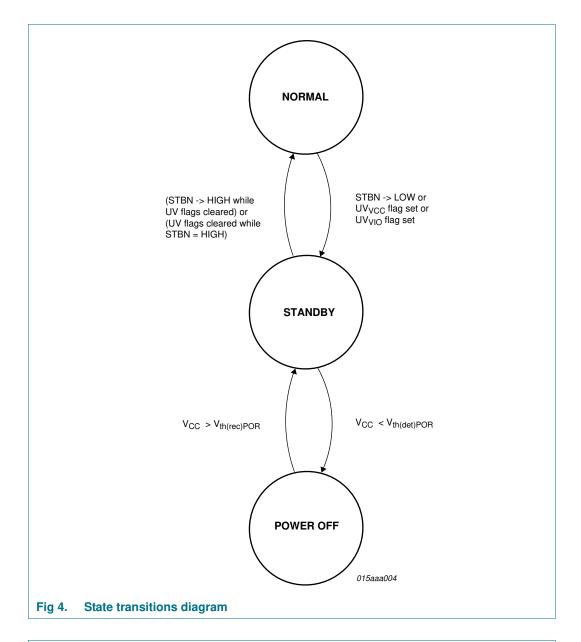
Pins ERRN and RXD indicate the status of the wake flag when V_{IO} and V_{CC} are within their operating ranges. See <u>Table 3</u> for a description of pins ERRN and RXD when an undervoltage is detected on pin V_{IO} or pin V_{CC} .

The status register cannot be read via the SPI interface if an undervoltage is detected on pin $V_{\text{IO}}.$

The BGE input has no effect in Standby mode.

6.1.3 Power-off mode

The transmitter and the two receivers (normal and low-power) are deactivated in Power-off mode. As a result, the wake flag is not set if a wake-up pattern or dedicated data frame is received. If the voltage at V_{CC} rises above V_{th(rec)POR}, the transceiver switches to Standby mode and the digital section is reset. If V_{CC} subsequently drops below V_{th(det)POR}, the transceiver reverts to Power-off mode (see <u>Section 6.2</u>).


The status register cannot be read via the SPI interface in Power-off mode.

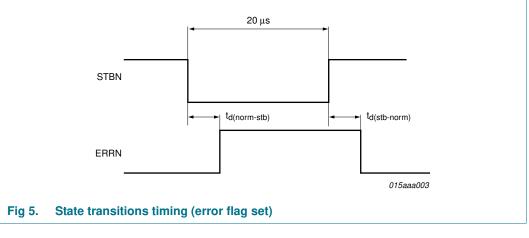

6.1.4 State transitions

Figure 4 shows the TJA1083 state transition diagram. The timing diagram for the ERRN indication signal during transitions between Normal and Standby modes, when the error flag is set and the wake flag is not set, is illustrated in Figure 5 and described in Table 6.

TJA1083

FlexRay node transceiver

All information provided in this document is subject to legal disclaimers.

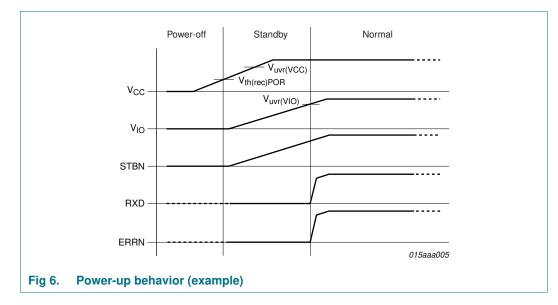
TJA1083

Transition	UVV _{IO} flag <mark>[1]</mark>	UVV _{CC} flag <mark>^[1]</mark>	wake flag ^[1]	PWON flag ^[1]	STBN	VCC level
Normal to Standby	cleared	cleared	cleared	cleared	\rightarrow L	$V_{CC} > V_{uvd(VCC)}$
	\rightarrow set	cleared	cleared	cleared	Н	$V_{CC} > V_{uvd(VCC)}$
	cleared	\rightarrow set	cleared	cleared	Н	$V_{uvd(VCC)} > V_{CC} > V_{th(det)POR}$
Standby to Normal	cleared	cleared	$1 \rightarrow cleared$	$2 \rightarrow cleared$	\rightarrow H	$V_{CC} > V_{uvd(VCC)}$
	\rightarrow cleared	cleared	$1 \rightarrow cleared$	$2 \rightarrow cleared$	Н	$V_{CC} > V_{uvd(VCC)}$
	cleared	\rightarrow cleared	$1 \rightarrow cleared$	$2 \rightarrow cleared$	Н	$V_{uvd(VCC)} > V_{CC} > V_{th(det)POR}$
Standby to Power-off	Х	set	Х	Х	Х	\rightarrow V _{CC} < V _{th(det)POR}
Power-off to Standby	Х	set	Х	$1 \rightarrow set$	Х	$\rightarrow V_{CC} > V_{th(rec)POR}$

Table 6. State transitions

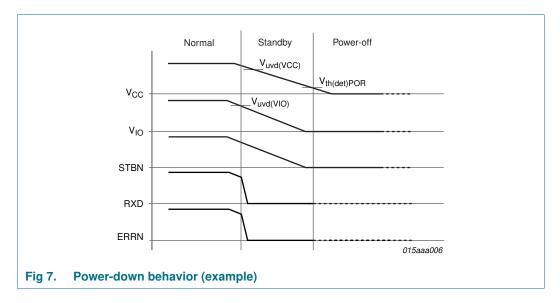
ation that initi anding 1 in dia ak - +6----

[1] See Table 7 for set and reset conditions of all flags.


6.2 Power-up and power-down behavior

6.2.1 Power-up

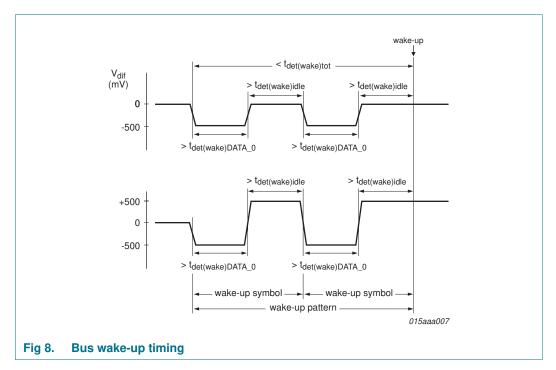
The TJA1083 has two supply pins: V_{CC} (+5 V) and V_{IO} (for the voltage level adaptation). The ramp up of the different power supplies can vary, depending on the state or value of a number of signals and parameters. The power-up behavior of the TJA1083 is not affected by the sequence in which power is supplied to these pins or by the voltage ramp up.


As an example, Figure 6 shows one possible power supply ramp-up scenario. The digital section of the TJA1083 is supplied by V_{CC}. The voltage on pin V_{CC} ramps up before the voltage on pin V_{IO} . As long as the voltage on V_{CC} remains below the power-on reset recovery threshold, V_{th(rec)POR}, the internal state machine is inactive and the transceiver is totally passive, remaining in Power-off mode. As soon as the voltage rises above the $V_{th(rec)POR}$ threshold, the internal state machine starts running, setting the PWON flag and switching the TJA1083 to Standby mode. This initializes the V_{CC} and V_{IO} under-voltage flags to the set state (since both V_{CC} and V_{IO} are actually in undervoltage state just after power-on).

Once both V_{IO} and V_{CC} have reached their operating ranges, the under-voltage flags are reset. The operating mode is then determined by the level on STBN (the TJA1083 switches to Normal mode if STBN is HIGH and remains in Standby mode if STBN is LOW), provided V_{IO} and V_{CC} are above their respective undervoltage recovery levels $(V_{uvr(VIO)} \text{ and } V_{uvr(VCC)}).$

6.2.2 Power-down

The behavior of the TJA1083 during power-down is illustrated in Figure 7.



TJA1083 Product data sheet

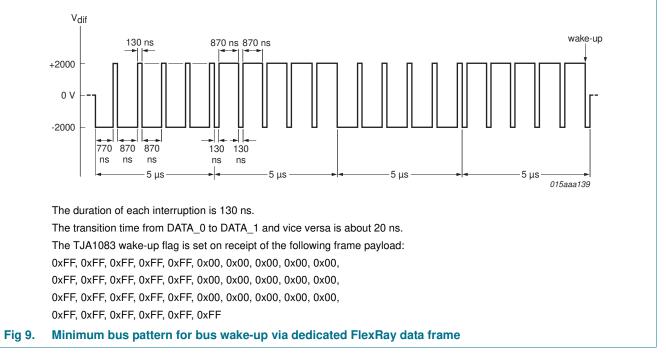
6.3 Remote wake-up

6.3.1 Bus wake-up via wake-up pattern

A valid remote wake-up event occurs when a wake-up pattern is received. A wake-up pattern consists of at least two consecutive wake-up symbols. A wake-up symbol comprises a DATA_0 phase lasting longer than $t_{det(wake)DATA_0}$ followed by an idle phase lasting longer than $t_{det(wake)idle}$, provided both wake-up symbols occur within a time span of $t_{det(wake)tot}$ (see Figure 8). The transceiver also wakes up if DATA_1 phases are substituted for the idle phases.

See <u>Ref. 1</u> for more details of the wake-up mechanism.

6.3.2 Bus wake-up via dedicated FlexRay data frame


The TJA1083 wake flag is set when a dedicated data frame emulating a valid wake-up pattern, as shown in Figure 9, is received.

The DATA_0 and DATA_1 phases of the emulated wake-up symbol are interrupted by the Byte Start Sequence (BSS) preceding each byte in the data frame. With a data rate of 10 Mbit/s, the interruption has a maximum duration of 130 ns and does not prevent the transceiver from recognizing the wake-up pattern in the payload.

For longer interruptions at lower data rates (5 Mbit/s and 2.5 Mbit/s), the wake-up pattern should be used (see <u>Section 6.3.1</u>).

The wake flag is not set if an invalid wake-up pattern is received. See <u>Ref. 1</u> for more details on invalid wake-up patterns.

6.4 Bus error detection

The TJA1083 detects the following bus errors during transmission:

- Short-circuit BP to BM at the ECU connector or on the bus
- Short-circuit BP to GND at the ECU connector or on the bus
- · Short-circuit BM to GND at the ECU connector or on the bus
- Short-circuit BP to V_{CC} at the ECU connector or on the bus
- Short-circuit BM to V_{CC} at the ECU connector or on the bus

The bus error flag is not set when a wake-up pattern or a FlexRay Collision Avoidance Symbol (CAS) is being transmitted or received.

6.5 Fail silent behavior

Three mechanisms guarantee the 'fail silent' behavior of the TJA1083:

- The TXEN clamped flag is set if pin TXEN goes LOW for longer than t_{detCL(TXEN)} in Normal mode; the transmitter is disabled.
- The BGE clamped flag is set if pin BGE goes HIGH for longer than t_{detCL(BGE)} in Normal mode; no action is taken.
- If a loss-of-ground occurs at the transceiver, resulting in the TJA1083 switching to Power-off mode, no current flows out of the digital input pins (TXD, TXEN, BGE, STBN, SCLK, SCSN); see <u>Table 3</u> for details of the behavior of the bus pins.

6.6 TJA1083 flags

The TJA1083 has 11 status/error flags. These are described in Table 7.

Flag name	Flag type	Flag description	Set condition	Reset condition ^[1]	Consequence of flag set
bus wake	status flag	indicates if a wake-up event has occurred	wake-up event on bus in Standby mode ^[2]	transition to Normal mode	$\begin{array}{l} RXD \rightarrow LOW;\\ ERRN \rightarrow LOW \ \underline{^{[3]}} \end{array}$
Normal mode	status flag	indicates if the transceiver is in Normal mode	entering Normal mode	leaving Normal mode	-
transmitter enabled	status flag	indicates the transmitter status	transmitter enabled ^[4]	transmitter disabled	-
BGE clamped	status flag	indicates if pin BGE is clamped	BGE HIGH for longer than t _{detCL(BGE)} ^[5]	BGE LOW ^[5]	-
PWON	status flag	indicates when the digital section is initialized	$V_{CC} > V_{th(rec)POR}$	transition to Normal mode	-
bus error	error flag	indicates if a bus error has been detected	bus error detected ^[5]	no bus error detected or positive edge on TXEN ^[5]	ERRN → LOW [6]
TEMP HIGH	error flag	indicates if the max. junction temperature has been reached	$T_{vj} > T_{j(dis)(high)}^{[5]}$	$\begin{array}{l} \text{TXEN} = \text{HIGH while} \\ \text{T}_{vj} < \text{T}_{j(dis)(high)}^{[\underline{5}]} \end{array}$	ERRN \rightarrow LOW ^[6] ; transmitter disabled
TXEN clamped	error flag	indicates if pin TXEN is clamped	TXEN LOW for longer than t _{detCL(TXEN)} [5]	TXEN = HIGH ^[5]	ERRN \rightarrow LOW [6]; transmitter disabled
UVV _{CC}	error flag	indicates if there is an undervoltage at pin $V_{\mbox{\scriptsize CC}}$	$V_{CC} < V_{uvd(VCC)}$ for longer than $t_{det(uv)(VCC)}$	$V_{CC} > V_{uvr(VCC)}$ for longer than $t_{rec(uv)(VCC)}$	ERRN \rightarrow LOW [6]; entering Standby mode
UVV _{IO}	error flag	indicates if there is an undervoltage at pin V_{IO}	$V_{IO} < V_{uvd(VIO)}$ for longer than $t_{det(uv)(VIO)}$	$\label{eq:VIO} \begin{split} V_{IO} &> V_{uvr(VIO)} \text{ for longer} \\ than \ t_{rec(uv)(VIO)} \end{split}$	ERRN \rightarrow LOW [6]; entering Standby mode
SPI error	error flag	indicates if an SPI error has occurred	SPI error detected ^[8]	falling edge on SCSN	ERRN \rightarrow LOW [7]; SDO goes to a high impedance state

Table 7. TJA1083 flags and set/reset conditions

[1] All flags, except for the PWON flag, are reset after a power-on reset.

[2] If an undervoltage has not been detected on pin V_{CC} .

[3] If STBN = LOW.

[4] If BGE = HIGH, the Normal mode flag is set, the TEMP HIGH flag is not set and the TXEN clamped flag is not set.

- [5] Flag can only be set or reset in Normal mode or on leaving Normal mode.
- [6] If STBN = HIGH.
- [7] If STBN = HIGH in SPI mode
- [8] The SPI error flag is set when:

a) more than 16 falling edges occur on pin SCLK while pin SCSN = LOW

b) less than 16 falling edges occur on pin SCLK while pin SCSN = LOW.

6.7 TJA1083 status register

The TJA1083 contains a 16-bit status register, of which bits S0 to S4 reflect the state of the status flags, bits S5 to S10 reflect the state of the error flags and bit S15 is a parity bit. All flags can be individually read out on pin SDO via a 16-bit SPI interface when the transceiver is configured in SPI mode. The status register bits are described in <u>Table 8</u>.

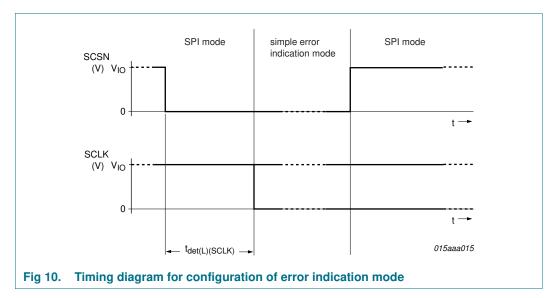
TJA1083

FlexRay node transceiver

Table 0.	IJA 1005 Status Te	yistei	
Status bit	Flag name	Set condition	Reset condition
S0	bus wake	bus wake flag set	bus wake flag cleared
S1	Normal mode	Normal mode flag set	Normal mode flag cleared
S2	transmitter enabled	transmitter enabled flag set	transmitter enabled flag cleared
S3	BGE clamped	BGE clamped flag set	BGE clamped flag cleared
S4	PWON	PWON flag set	PWON flag cleared and successful readout ^[1]
S5	bus error	bus error flag set	bus error flag cleared and successful readout ^[1]
S6	TEMP HIGH	TEMP HIGH flag set	TEMP HIGH flag cleared and successful readout ^[1]
S7	TXEN clamped	TXEN clamped flag set	TXEN clamped flag cleared and successful readout ^[1]
S8	UVV _{CC}	$\mathrm{UVV}_{\mathrm{CC}}$ flag set	UVV _{CC} flag cleared and successful readout ^[1]
S9	UVV _{IO}	UVV _{IO} flag set	UVV_{IO} flag cleared and successful readout $[\![1]\!]$
S10	SPI error	SPI error flag set	SPI error flag cleared and successful readout ^[1]
S11	reserved	always LOW	
S12	reserved	always HIGH	
S13	reserved	always LOW	
S14	reserved	always HIGH	
S15	parity bit	odd parity of status bits	even parity of status bits

Table 8. TJA1083 status register

[1] Also cleared during Power-off.


6.8 Error signaling

The TJA1083 provides two modes for error indication:

- Simple error indication mode
- SPI mode (default mode)

SPI mode is active on power-up.

To switch to simple error indication mode, SCSN must be held LOW (connected to GND) and SCLK held HIGH (connected to V_{IO}) for longer than $t_{det(L)(SCLK)}$ (provided a V_{IO} undervoltage has not occurred). When the TJA1083 is in simple error indication mode, a rising edge on SCSN initiates a transition to SPI mode (again provided a V_{IO} undervoltage has not occurred); see Figure 10.

If a V_{IO} undervoltage condition is detected, it is not possible to switch between SPI mode and simple error indication mode.

6.8.1 SPI mode

The error flag information in the status register is latched in SPI mode. This means that the status bit is reset once the status register has been completely read (provided the corresponding error flag has been reset). If an error condition is detected in Normal mode, pin ERRN goes LOW (provided one of the error bits, S5 to S10, is set). Pin ERRN goes HIGH again once all the error bits have been reset.

6.8.2 Simple error indication mode

If an error condition is detected in Normal mode, pin ERRN goes LOW once the relevant error flag has been set. Pin ERRN stays stable for at least $t_{ERRNL(min)}$ and goes HIGH again when all error conditions have been cleared and all flags have been reset. Error flags are not latched. It is not possible to read-out the status bits in this mode.

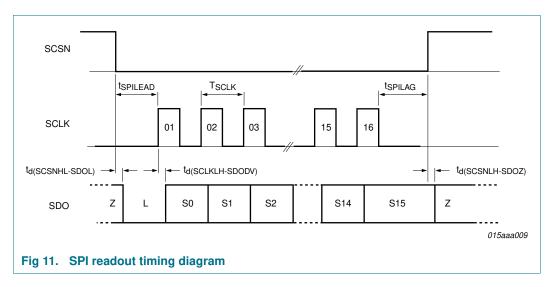
6.9 SPI interface

The TJA1083 includes a 16-bit SPI interface to enable a host to read the status register when the transceiver is in SPI mode (see <u>Section 6.8</u>).

While pin SCSN is HIGH, the SDO output is in a high-impedance state. To begin a status register readout, the host must force pin SCSN LOW. This action causes the SDO pin to output a LOW level by default. The data on pin SDO is then shifted out on the rising edge of the clock signal on pin SCLK.

The status bits shifted out on pin SDO are active HIGH. The status bits are refreshed and pin SDO returned to a high-impedance state once the status register has been read successfully (after exactly 16 clock cycles) and SCSN has been forced HIGH again. Clock signals on SCLK are ignored while SCSN is HIGH. The timing diagram for the SPI readout is illustrated in Figure 11.

The SLCK period ranges from 500 ns to 100 μ s (10 kbit/s to 2 Mbit/s).


TJA1083

If SCSN remains LOW for longer than 16 clock cycles, it is recognized as an SPI error. When this happens, the SPI error flag is set and pin SDO goes to a high-impedance state until the next falling edge on pin SCSN.

An SPI error is also assumed if fewer than 16 clock cycles are received while SCSN is LOW. If this happens, the SPI error flag is set.

All status bits are refreshed once the status register has been successfully read.

When the transceiver is in simple error indication mode the SDO output is in a high-impedance state and pin SCSN is in pull-down mode. In SPI mode pin SCSN is in pull-up mode.

SPI readout is not possible when the transceiver has detected an undervoltage on V_{IO} .

7. Limiting values

Table 9. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage	no time limit	-0.3	+5.5	V
V _{IO}	supply voltage on pin V_{IO}	no time limit	-0.3	+5.5	V
V _{ERRN}	voltage on pin ERRN	no time limit	-0.3	$V_{IO} + 0.3$	V
V _{RXD}	voltage on pin RXD	no time limit	-0.3	$V_{IO} + 0.3$	V
V _{SDO}	voltage on pin SDO	no time limit	-0.3	$V_{IO} + 0.3$	V
V _{TXEN}	voltage on pin TXEN	no time limit	-0.3	+5.5	V
V _{TXD}	voltage on pin TXD	no time limit	-0.3	+5.5	V
V _{STBN}	voltage on pin STBN	no time limit	-0.3	+5.5	V
V _{SCSN}	voltage on pin SCSN	no time limit	-0.3	+5.5	V
V _{SCLK}	voltage on pin SCLK	no time limit	-0.3	+5.5	V
V _{BGE}	voltage on pin BGE	no time limit	-0.3	+5.5	V
V_{BP}	voltage on pin BP	no time limit (with respect to pins BM and GND)	-60	+60	V

All information provided in this document is subject to legal disclaimers.

TJA1083

Table 9. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{BM}	voltage on pin BM	no time limit (with respect to pins BP and GND)	-60	+60	V
I _{I(ERRN)}	input current on pin ERRN	no time limit; $V_{IO} = 0 V$	-10	10	mA
I _{I(RXD)}	input current on pin RXD	no time limit; $V_{IO} = 0 V$	-10	10	mA
I _{I(SDO)}	input current on pin SDO	no time limit; $V_{IO} = 0 V$	-10	10	mA
V _{trt} tra	transient voltage	on pins BM and BP	<u>[1]</u> –100	-	V
			[2] _	75	V
			<u>[3]</u> –150	-	V
			[4]	100	V
T _{stg}	storage temperature		-55	+150	°C
T _{vj}	virtual junction temperature		<u>[5]</u> –40	+150	°C
T _{amb}	ambient temperature		-40	+125	°C
V _{ESD}	electrostatic discharge voltage	IEC61000-4-2 on pins BP and BM to ground	<u>6</u> –6.0	+6.0	kV
		HBM on pins BP and BM to ground	<u>[7]</u> −8.0	+8.0	kV
		HBM on any other pin	<u>[7]</u> −4.0	+4.0	kV
		MM on all pins	<u>8</u> –200	+200	V
		CDM on all pins	<mark>9</mark> –1000	+1000	V

[1] According to ISO7637, test pulse 1, class C; verified by an external test house.

[2] According to ISO7637, test pulse 2a, class C; verified by an external test house.

[3] According to ISO7637, test pulse 3a, class C; verified by an external test house.

[4] According to ISO7637, test pulse 3b, class C; verified by an external test house.

[5] In accordance with IEC 60747-1. An alternative definition of T_{vj} is: $T_{vj} = T_{amb} + P \times R_{th(j-a)}$, where $R_{th(j-a)}$ is a fixed value used in the calculation of T_{vj} . The rating for T_{vj} limits the allowable combinations of power dissipation (P) and ambient temperature (T_{amb}).

[6] IEC61000-4-2: C = 150 pF; R = 330 Ω; verified by an external test house; the test results were equal to or better than ±6 kV (unaided).

[7] HBM: C = 100 pF; R = $1.5 \text{ k}\Omega$.

[8] MM: C = 200 pF; L = 0.75 μ H; R = 10 Ω .

[9] CDM: R = 1 Ω.

8. Thermal characteristics

Table 10.Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	130	K/W

9. Static characteristics

Table 11. Static characteristics

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pin V _{CC}						
I _{CC}	supply current	Standby mode with no undervoltage; $T_{vj} \leq 85~^\circ C$	-	20	30	μA
		Standby mode with no undervoltage; $T_{\nu j} \leq 150~^\circ C$	-	20	40	μA
		Power-off mode; $T_{vj} \leq 85~^{\circ}C$	-	-	30	μA
		Power-off mode; $T_{vj} \leq 150~^{\circ}\text{C}$	-	-	40	μA
		Normal mode; V _{BGE} = 0 V or V _{TXEN} = V _{IO}	-	11	22	mA
		Normal mode; $V_{BGE} = V_{IO}$; $V_{TXEN} = 0 V$	-	40	60	mA
		Normal mode; $V_{BGE} = V_{IO}$; $V_{TXEN} = 0$; V; $R_{bus} > 10 M\Omega$	-	25	40	mA
V _{uvd(VCC)}	undervoltage detection voltage on pin V_{CC}		4.45	-	4.729	V
V _{uvr(VCC)}	undervoltage recovery voltage on pin V _{CC}		4.47	-	4.749	V
$V_{uvhys(VCC)}$	undervoltage hysteresis voltage on pin V_{CC}		20	-	290	mV
V _{th(det)} POR	power-on reset detection threshold voltage		3.75	-	4.15	V
V _{th(rec)} POR	power-on reset recovery threshold voltage		3.85	-	4.25	V
V _{hys(POR)}	power-on reset hysteresis voltage		100	-	500	mV
Pin V _{IO}						
l _{IO}	supply current on pin V _{IO}	Normal mode; $V_{TXEN} = V_{IO}$; $V_{BGE} = V_{IO}$; $R_{RXD} > 10 \ M\Omega$	-	-	1000	μA
		Normal mode; $V_{TXEN} = 0 V$; $V_{BGE} = V_{IO}$; $R_{RXD} > 10 M\Omega$	-	-	1000	μA
		Standby mode with no undervoltage	-	2.2	7	μA
		Power-off mode; $V_{IO} = 5 V$	-	3	7	μA
V _{uvd(VIO)}	undervoltage detection voltage on pin V _{IO}		2.55	-	2.774	V
V _{uvr(VIO)}	undervoltage recovery voltage on pin V _{IO}		2.575	-	2.799	V
V _{uvhys(VIO)}	undervoltage hysteresis voltage on pin V _{IO}		25	-	240	mV
Pin SCSN						
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
FJA1083		All information provided in this document is subject to legal disclaimers.		C	NXP B.V. 2012. All	rights reserve
Product data s	heet	Rev. 1 — 10 October 2012				18 of 4

Table 11. Static characteristics ...continued

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	LOW-level input voltage		-0.3	-	0.3V _{IO}	V
I _{IH}	HIGH-level input current	Simple error indication mode; $V_{SCSN} = 0.7 V_{IO}$	3	-	15	μA
I _{IL}	LOW-level input current	SPI mode; $V_{SCSN} = 0.3 V_{IO}$	-15	-	-3	μA
l _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{SCSN} = 5 V$; $V_{CC} = V_{IO} = 0 V$	-5	0	+5	μA
Pin SCLK						
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	$0.3V_{IO}$	V
I _{IH}	HIGH-level input current	$V_{SCLK} = V_{IO}$	-1	0	+1	μA
IIL	LOW-level input current	$V_{SCLK} = 0.3 V_{IO}$	-15	-	-3	μA
l _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{SCLK} = 5 V$; $V_{CC} = V_{IO} = 0 V$	-5	0	+5	μA
Pin STBN						
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	$0.3V_{IO}$	V
I _{IH}	HIGH-level input current	$V_{STBN} = 0.7 V_{IO}$	3	-	15	μA
IIL	LOW-level input current	V _{STBN} = 0 V	-1	0	+1	μA
l _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{STBN} = 5 V$; $V_{CC} = V_{IO} = 0 V$	-5	0	+5	μA
Pin TXEN						
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	$0.3V_{IO}$	V
I _{IH}	HIGH-level input current	$V_{TXEN} = V_{IO}$	-1	0	+1	μA
I _{IL}	LOW-level input current	$V_{TXEN} = 0.3 V_{IO}$	-300	-	-50	μA
l _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{TXEN} = 5 V$; $V_{CC} = V_{IO} = 0 V$	-5	0	+5	μA
Pin BGE						
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	$0.3V_{IO}$	V
I _{IH}	HIGH-level input current	$V_{BGE} = 0.6 V_{IO}$	3	-	15	μA
IIL	LOW-level input current	$V_{BGE} = 0 V$	-1	0	+1	μA
l _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{BGE} = 5 V$; $V_{CC} = V_{IO} = 0 V$	-5	0	+5	μA
Pin TXD						
V _{IH}	HIGH-level input voltage	Normal mode	0.6V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage	Normal mode	-0.3	-	$0.4V_{IO}$	V
I _{IH}	HIGH-level input current	$V_{TXD} = 0.6 V_{IO}$	3	-	15	μA
IIL	LOW-level input current	$V_{\text{TVD}} = 0 V$	-1	0	+1	μA

TJA1083

Table 11. Static characteristics ...continued

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{TXD} = 5 V$; $V_{CC} = V_{IO} = 0 V$	-5	0	+5	μA
Ci	input capacitance	with respect to all other pins at ground; V _{TXD} = 100 mV; f = 5 MHz	[1] -	-	10	pF
Pin RXD						
V _{OH}	HIGH-level output voltage	$I_{OH(RXD)} = -1.5 \text{ mA}$	$V_{IO}-0.4$	-	V _{IO}	V
V _{OL}	LOW-level output voltage	$I_{OL(RXD)} = 1.5 \text{ mA}$	-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{RXD} = V_{IO} - 0.4 \text{ V}; V_{IO} = V_{CC}$	-15	-	-1.5	mA
I _{OL}	LOW-level output current	$V_{RXD} = 0.4 V$	1.5	-	15	mA
Vo	output voltage	when undervoltage on V_{IO} ; $R_L = 100 \text{ k}\Omega$ to GND	-	-	500	mV
		Power-off mode; $R_L = 100 \text{ k}\Omega \text{ to } V_{IO}$	$V_{IO}-500$	-	V_{IO}	mV
Pin ERRN						
V _{OH}	HIGH-level output voltage	$I_{OH(ERRN)} = -100 \ \mu A$	$V_{IO}-0.4$	-	V _{IO}	V
V _{OL}	LOW-level output voltage	$I_{OL(ERRN)} = 200 \ \mu A$	-	-	0.4	V
I _{ОН}	HIGH-level output current	$V_{ERRN} = V_{IO} - 0.4 \text{ V}; V_{IO} = V_{CC}$	-1500	-	-100	μA
I _{OL}	LOW-level output current	V _{ERRN} = 0.4 V	200	-	1700	μA
IL	leakage current	Power-off mode; $V_{ERRN} \leq V_{IO}$	-5	-	+5	μA
Vo	output voltage	when undervoltage on V_{IO} ; $R_L = 100 \text{ k}\Omega \text{ to GND}$	-	-	500	mV
		Power-off mode; $R_L = 100 \text{ k}\Omega \text{ to GND}$	-	-	500	mV
Pin SDO						
V _{OH}	HIGH-level output voltage	$I_{OH(SDO)} = -0.5 \text{ mA}$	$V_{IO}-0.4$	-	V _{IO}	V
V _{OL}	LOW-level output voltage	$I_{OL(SDO)} = 0.8 \text{ mA}$	-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{SDO} = V_{IO} - 0.4 \ V$	-8	-3	-0.5	mA
I _{OL}	LOW-level output current	$V_{SDO} = 0.4 V$	0.8	3	9	mA
IL	leakage current	high-impedance state; 0 V < V _{SDO} < V _{IO}	-5	-	+5	μA

Table 11. Static characteristics ...continued

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Vo	output voltage	when undervoltage on V _{IO} ; V _{CC} > 4.75 V; R _L = 100 k Ω to GND		-500	-	+500	mV
		Power-off mode; $R_L = 100 \text{ k}\Omega \text{ to GND}$		-	-	500	mV
Pins BP and	BM						
V _{o(idle)(BP)}	idle output voltage on	Normal mode; $V_{TXEN} = V_{IO}$		$0.4V_{CC}$	$0.5V_{CC}$	$0.6V_{CC}$	V
	pin BP	Standby mode with no undervoltage on pin V_{CC}		-0.1	0	+0.1	V
V _{o(idle)(BM)}	idle output voltage on	Normal mode; $V_{TXEN} = V_{IO}$		$0.4V_{CC}$	$0.5V_{CC}$	$0.6V_{CC}$	V
	pin BM	Standby mode with no undervoltage on pin V_{CC}		-0.1	0	+0.1	V
I _{o(idle)} BP	idle output current on pin BP	Normal and Standby modes with no undervoltage; –60 V \leq V_{BP} \leq +60 V		-7.5	-	+7.5	mA
I _{o(idle)} BM	idle output current on pin BM	Normal and Standby modes with no undervoltage; –60 V \leq V_{BM} \leq +60 V		-7.5	-	+7.5	mA
V _{o(idle)(dif)}	differential idle output voltage	Normal mode		-25	0	+25	mV
	differential HIGH-level	$4.75~V \leq V_{CC} \leq 5.25~V$		900	-	2000	mV
	output voltage	$4.45~V \leq V_{CC} \leq 5.25~V$		700	-	2000	mV
V _{OL(dif)}	differential LOW-level output voltage	$4.75~V \leq V_{CC} \leq 5.25~V$		-2000	-	-900	mV
	output voltage	$4.45~V \leq V_{CC} \leq 5.25~V$		-2000		-700	mV
V _{IH(dif)}	differential HIGH-level input voltage	Normal mode; –10 V $\leq V_{cm} \leq$ +15 V	[2]	150	225	300	mV
V _{IL(dif)}	differential LOW-level	Normal mode; -10 V \leq V_{cm} \leq +15 V	[2]		-225	-150	mV
	input voltage	Standby mode with no undervoltage on pin $V_{CC};$ –10 V $\leq V_{cm} \leq$ +15 V	<u>[2]</u>	-400	-225	-100	mV
$ \Delta V_{i(dif)(H-L)} $	differential input volt. diff. betw. HIGH- and LOW-levels (abs. value)	$V_{cm} = 2.5 V$	[2]	-	-	30	mV
V _{i(dif)det(act)}	activity detection differential input voltage (absolute value)			150	225	300	mV
I _{O(sc)}	short-circuit output current (absolute value)	on pin BP; –5 V \leq V _{BP} \leq +60 V; R _{sc} \leq 1 $\Omega;$ t _{sc} \geq 1500 μs	<u>[4][6]</u>	-	-	72	mA
		on pin BP; –5 V \leq V_{BP} \leq +27 V; R_{sc} \leq 1 $\Omega;$ t_{sc} \geq 1500 μs	<u>[4][6]</u>	-	-	60	mA
		on pin BM; –5 V \leq V _{BM} \leq +60 V; R_{sc} \leq 1 $\Omega;$ t_{sc} \geq 1500 μs	<u>[4][6]</u>	-	-	72	mA
		on pin BM; –5 V \leq V _{BM} \leq +27 V; R_{sc} \leq 1 $\Omega;$ t_{sc} \geq 1500 μs	<u>[4][6]</u>	-	-	60	mA
		on pins BP and BM; V_{BP} = V _{BM} ; $R_{sc} \le 1 \ \Omega$; $t_{sc} \ge 1500 \ \mu s$	<u>[5][6]</u>	-	-	60	mA
R _{i(BP)}	input resistance on pin BP	$R_{bus} = \infty \Omega$		10	20	40	kΩ
JA1083		All information provided in this document is subject to legal disclain			@ N1	(P B.V. 2012. All r	

Table 11. Static characteristics ... continued

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{i(BM)}	input resistance on pin BM	$R_{bus} = \infty \ \Omega$		10	20	40	kΩ
$R_{i(dif)(BP-BM)}$	differential input resistance between pin BP and pin BM	$R_{bus} = \infty \Omega$		20	40	80	kΩ
I _{LI(BP)}	input leakage current on pin BP	Power-off mode; V_{CC} = V_{IO} = 0 V; 0 V \leq V_{BP} \leq 5 V		-5	0	+5	μA
		loss of ground; $V_{BP} = V_{BM} = 0$ V; all other pins connected to 16 V via 0 Ω	<u>[1]</u>	-1600	-	+1600	μA
I _{LI(BM)}	input leakage current on pin BM	Power-off mode; V_{CC} = V_{IO} = 0 V; 0 V \leq $V_{BM} \leq$ 5 V		-5	0	+5	μA
		loss of ground; $V_{BP} = V_{BM} = 0$ V; all other pins connected to 16 V via 0 Ω	[1]	-1600	-	+1600	μA
V _{cm(bus)(DATA_0)}	DATA_0 bus common-mode voltage	Normal mode		0.4V _{CC}	$0.5V_{CC}$	0.65V _{CC}	V
V _{cm(bus)} (DATA_1)	DATA_1 bus common-mode voltage	Normal mode		$0.4V_{CC}$	$0.5V_{CC}$	0.65V _{CC}	V
$\Delta V_{cm(bus)}$	bus common-mode voltage difference	Normal mode; DATA_1 – DATA_0		-25	0	+25	mV
C _{i(BP)}	input capacitance on pin BP	with respect to all other pins at ground; V_{BP} = 100 mV; f = 5 MHz	<u>[1]</u>	-	-	15	pF
C _{i(BM)}	input capacitance on pin BM	with respect to all other pins at ground; V_{BM} = 100 mV; f = 5 MHz	<u>[1]</u>	-	-	15	pF
C _{i(dif)(BP-BM)}	differential input capacitance between pin BP and pin BM	with respect to all other pins at ground; $V_{BP} = 100 \text{ mV}$; $V_{BM} = 100 \text{ mV}$; f = 5 MHz	[1]	-	-	5	pF
Z _{o(eq)TX}	transmitter equivalent output impedance	Normal mode; C_{bus} = 100 pF; R_{bus} = 40 Ω or 100 Ω	<u>[3]</u>	10	-	600	Ω
Temperature p	rotection						
$T_{j(dis)(high)}$	high disable junction temperature			180	-	200	°C

[1] Guaranteed by design.

[2] V_{cm} is the BP/BM common mode voltage.

 $\begin{array}{ll} [3] & Z_{o(TX)(eq)} = 50 \; \Omega \times (V_{bus(100)} - V_{bus(40)})/(2.5 \times V_{bus(40)} - V_{bus(100)}), \mbox{ where:} \\ & V_{bus(100)} = \mbox{the differential output voltage on a load of 100 } \Omega \mbox{ and 100 } pF \mbox{ in parallel.} \\ & V_{bus(40)} = \mbox{the differential output voltage on a load of 40 } \Omega \mbox{ and100 } pF \mbox{ in parallel, when driving a DATA_1.} \end{array}$

[4] R_{sc} is the short-circuit resistance; voltage difference between bus pins BP and BM is 60 V max.

[5] R_{sc} is the short-circuit resistance between BP and BM.

[6] t_{sc} is the minimum duration of the short-circuit

10. Dynamic characteristics

Table 12. Dynamic characteristics

All parameters are guaranteed for $V_{CC} = 4.45$ V to 5.25 V; $V_{IO} = 2.55$ V to 5.25 V; $T_{vj} = -40$ °C to +150 °C; $R_{bus} = 40 \Omega$ and $C_{bus} = 100$ pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Pins BP and B	Μ						
t _{d(TXD-bus)}	delay time from TXD to bus	Normal mode	[1][2]				
		DATA_0		-	-	60	ns
		DATA_1		-	-	60	ns
$\Delta t_{d(TXD-bus)}$	delay time difference from TXD to bus	Normal mode; between DATA_0 and DATA_1; Normal mode	[1][2]	-4	-	+4	ns
t _{d(bus-RXD)}	delay time from bus to RXD	Normal mode; $C_{RXD} = 25 \text{ pF};$ $V_{cm} = 2.5 \text{ V}$	<u>[3][4]</u>				
		DATA_0		-	-	75	ns
		DATA_1		-	-	75	ns
$\Delta t_{d(bus-RXD)}$	delay time difference from bus to RXD	between DATA_0 and DATA_1; Normal mode; C _{RXD} = 25 pF; V _{cm} = 2.5 V	<u>[3][4]</u>	-5	-	5	ns
t _{d(TXEN-busidle)}	delay time from TXEN to bus idle	Normal mode; V _{TXD} = 0 V	[5]	-	-	75	ns
t _{d(TXEN-busact)}	delay time from TXEN to bus active	Normal mode; V _{TXD} = 0 V	[5]	-	-	75	ns
$ \Delta t_{d(TXEN-bus)} $	delay time difference from TXEN to bus (absolute value)	Normal mode; between TXEN to bus active and TXEN to bus idle; $V_{TXD} = 0 V$	<u>[6][5]</u>			50	ns
t _{d(BGE-busidle)}	delay time from BGE to bus idle	Normal mode; V _{TXD} = 0 V	[5]	-	-	75	ns
t _{d(BGE-busact)}	delay time from BGE to bus active	Normal mode; V _{TXD} = 0 V	[5]	-	-	75	ns
t _{r(dif)(bus)}	bus differential rise time	DATA_0 to DATA_1; 20 % to 80 %	[5]	6	-	18.75	ns
t _{f(dif)(bus)}	bus differential fall time	DATA_1 to DATA_0; 80 % to 20 %	[5]	6	-	18.75	ns
$\Delta t_{(r-f)(dif)}$	difference between differential rise and fall time	on bus; 80 % to 20 %	<u>[5]</u>	-3	-	3	ns
t _{f(bus)(idle-act)}	bus fall time from idle to active	bus idle to DATA_0; –30 mV > V _{dif} > –300 mV	<u>[5][7]</u>	-	-	30	ns
t _{f(bus)(act-idle)}	bus fall time from active to idle	DATA_1 to bus idle; 300 mV > V _{dif} > 30 mV	<u>[5][7]</u>	-	-	30	ns
t _{r(bus)(act-idle)}	bus rise time from active to idle	DATA_0 to bus idle; -300 mV < V _{dif} < -30 mV	<u>[5][7]</u>	-	-	30	ns
Wake-up detec	tion						
t _{det(wake)} DATA_0	DATA_0 wake-up detection time	Standby mode with no undervoltage on pin V _{CC} ; $-10 V \le V_{cm} \le +15 V$	<u>[3][8]</u>	1	-	4	μS
$t_{det(wake)idle}$	idle wake-up detection time	Standby mode with no undervoltage on pin V _{CC} ; $-10 V \le V_{cm} \le +15 V$	<u>[3][8]</u>	1	-	4	μS

Table 12. Dynamic characteristics ...continued

All parameters are guaranteed for $V_{CC} = 4.45$ V to 5.25 V; $V_{IO} = 2.55$ V to 5.25 V; $T_{vj} = -40$ °C to +150 °C; $R_{bus} = 40 \Omega$ and $C_{bus} = 100$ pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{det(wake)tot}	total wake-up detection time	Standby mode with no undervoltage on pin V _{CC} ; $-10 V \le V_{cm} \le +15 V$	<u>[3][8]</u>	50	-	115	μS
t _{sup(int)} wake	wake-up interruption suppression time	Standby mode with no undervoltage on pin V _{CC} ; $-10 V \le V_{cm} \le +15 V$	<u>[3][9]</u>	130	-	1000	ns
$t_{d(wake-ERRN)}$	delay time from wake-up to ERRN	Standby mode		-	-	100	μs
$t_{d(wake-RXD)}$	delay time from wake-up to RXD	Standby mode		-	-	100	μS
Undervoltage							
t _{det(uv)(VCC)}	undervoltage detection time on pin V_{CC}	0 V \leq V $_{IO}$ \leq 5.5 V; V $_{CC}$ = 4.35 V		2	-	100	μS
$t_{rec(uv)(VCC)}$	undervoltage recovery time on pin V_{CC}	0 V \leq V $_{IO}$ \leq 5.5 V; V $_{CC}$ = 4.85 V		2	-	100	μS
t _{det(uv)(VIO)}	undervoltage detection time on pin $\ensuremath{V_{\text{IO}}}$	$\label{eq:Vth(det)POR} \begin{split} V_{th(det)POR} < V_{CC} < 5.5 \ V; \\ V_{IO} = 2.45 \ V \end{split}$		5	-	100	μS
t _{rec(uv)(VIO)}	undervoltage recovery time on pin $\ensuremath{V_{\text{IO}}}$	$\label{eq:Vth(det)POR} \begin{split} V_{th(det)POR} < V_{CC} < 5.5 \ V; \\ V_{IO} = 2.9 \ V \end{split}$		5	-	100	μS
Activity detection	on						
t _{det(act)(bus)}	activity detection time on bus pins	Normal mode; $V_{cm} = 2.5 V$; V_{dif} : 0 mV \rightarrow 400 mV	<u>[3][7]</u>	100	-	250	ns
$t_{det(idle)(bus)}$	idle detection time on bus pins	Normal mode; $V_{cm} = 2.5 V$; V_{dif} : 400 mV \rightarrow 0 mV	<u>[3][7]</u>	100	-	200	ns
$ \Delta t_{det(act\text{-}idle)} $	active to idle detection time difference (absolute value)	Normal mode; on bus pins; $V_{cm} = 2.5 V$	[3]	-	-	150	ns
ERRN signaling]						
t _{det(L)(SCLK)}	LOW-level detection time on pin SCLK	Normal or Standby mode with no undervoltage on pin $V_{\rm IO}$		95	-	310	μS
t _{ERRNL(min)}	minimum ERRN LOW time	simple error indication mode; Normal or Standby mode		2	-	10	μS
$t_{d(errdet-ERRNL)}$	delay time from error detection to ERRN LOW	all modes		-	-	100	μS
SPI							
$t_{d(SCSNHL-SDOL)}$	SCSN falling edge to SDO LOW-level delay time	$V_{uvd(VIO)} < V_{IO} < 5.5 V;$ 4.45 V < V _{CC} < 5.5 V; C _{SDO} = 50 pF	<u>[10]</u>	-	-	250	ns
t _{d(SCLKLH} -SDODV)	SCLK rising edge to SDO data valid delay time	$\label{eq:V_UVd(VIO)} \begin{array}{l} < V_{IO} < 5.5 \ V; \\ 4.45 \ V < V_{CC} < 5.5 \ V; \\ C_{SDO} = 50 \ pF \end{array}$	<u>[10]</u>	-	-	200	ns
t _d (SCSNLH-SDOZ)	SCSN rising edge to SDO three-state delay time	$\label{eq:V_UVd(VIO)} \begin{array}{l} < V_{IO} < 5.5 \ V; \\ 4.45 \ V < V_{CC} < 5.5 \ V; \\ C_{SDO} = 50 \ pF \end{array}$	[10]	-	-	500	ns
T _{SCLK}	SCLK period	$\label{eq:V_UVd(VIO)} \begin{array}{l} V_{\rm UO} < 5.5 \ V; \\ 4.45 \ V < V_{\rm CC} < 5.5 \ V; \\ C_{\rm SDO} = 50 \ pF \end{array}$	<u>[10]</u>	0.5	-	100	μS

Table 12. Dynamic characteristics ... continued

All parameters are guaranteed for $V_{CC} = 4.45$ V to 5.25 V; $V_{IO} = 2.55$ V to 5.25 V; $T_{vj} = -40$ °C to +150 °C; $R_{bus} = 40 \Omega$ and $C_{bus} = 100$ pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{SPILEAD}	SPI enable lead time	$V_{uvd(VIO)} < V_{IO} < 5.5 V;$ 4.45 V < $V_{CC} < 5.5 V;$ $C_{SDO} = 50 \text{ pF}$	<u>[10]</u>	250	-	-	ns
t _{SPILAG}	SPI enable lag time	$ \begin{array}{l} V_{uvd(VIO)} < V_{IO} < 5.5 \ V; \\ 4.45 \ V < V_{CC} < 5.5 \ V; \\ C_{SDO} = 50 \ pF \end{array} $	[10]	250	-	-	ns
RXD							
t _r	rise time	20 % to 80 %; C _{RXD} = 15 pF	[6]	-	-	9	ns
		20 % to 80 %; C_{RXD} = 25 pF	[6]	-	-	10.75	ns
t _f	fall time	80 % to 20 %; C _{RXD} = 15 pF	[6]	-	-	9	ns
		80 % to 20 %; C_{RXD} = 25 pF	[6]	-	-	10.75	ns
$\Delta t_{(r-f)}$	difference between rise and fall time	C _{RXD} = 15 pF	[6]	-	-	5	ns
		C _{RXD} = 25 pF	[6]	-	-	5	ns
		C _{RXD} = 10 pF; simulated	[6][11]	-	-	5	ns
t _(r+f)	sum of rise and fall time	C _{RXD} = 15 pF	[6]	-	-	13	ns
		C _{RXD} = 25 pF	[6]	-	-	16.5	ns
		C _{RXD} = 10 pF; simulated	[6][11]	-	-	16.5	ns
Bus error flag							
t _{d(norm-stb)}	normal mode to standby delay time	bus error flag set		3	-	10	μs
t _{d(stb-norm)}	standby to normal mode delay time	bus error flag set		3	-	10	μS
Miscellaneous							
t _{detCL(TXEN)}	TXEN clamp detection time			650	-	2600	μS
t _{detCL(BGE)}	BGE clamp detection time			650	-	2600	μS
t _{d(TXENH-RXDH)}	delay time from TXEN HIGH to RXD HIGH	idle loop delay; Normal mode; TXD = LOW; $V_{cm} = 2.5 V$; $C_{RXD} = 25 pF$	[3]	-	-	300	ns

[1] Sum of TXD rise and fall times (20 % to 80 %); $t_{r(TXD)} + t_{f(TXD)} = max. 9 ns.$

- [2] See Figure 13.
- [3] V_{cm} is the BP/BM common mode voltage.
- [4] See Figure 14.
- [5] See Figure 13.
- [6] Guaranteed by design.
- $\label{eq:Vdif} [7] \quad V_{dif} = V_{BP} V_{BM}.$
- [8] See Figure 8.
- [9] See Figure 9.
- [10] See Figure 11.

[11] Load at end of 50 Ω microstrip with a propagation delay of 1 ns; 20 % to 80 % and 80 % to 20 %.