

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

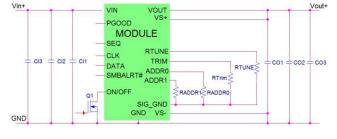
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

7Vdc -14Vdc input; 0.4Vdc to1.5Vdc output; 120A Output Current



RoHS Compliant

Applications

- Networking equipment
- Telecommunications equipment
- Servers and storage applications
- Distributed power architectures
- Intermediate bus voltage applications
- Industrial equipment

Features

- Compliant to RoHS EU Directive 2002/95/EC (Z versions)
- Compliant to IPC-9592 (September 2008), Category 2
- Compatible in a Pb-free or SnPb reflow environment (Z versions)
- Wide Input voltage range (7Vdc-14 Vdc)
- Output voltage programmable from 0.4Vdc to 1.5Vdc via external resistor or PMBus™# commands
- Digital interface through the PMBus protocol
- Ability to parallel multiple modules (optional)
- Digital sequencing
- Fast digital loop control
- Power Good signal
- Fixed switching frequency with capability of external synchronization
- Output overcurrent protection (non-latching)
- Output overvoltage protection
- Over temperature protection
- Remote On/Off
- Ability to sink and source current
- Cost efficient open frame design
- Small size: 53.8 x 31.7 x 13.3 mm [2.118" x 1.248" x 0.524"]
- Wide operating temperature range [-40°C to 85°C]
- UL* 60950-1 2nd Ed. Recognized, CSA[†] C22.2 No. 60950-1-07 Certified, and VDE[‡] (EN60950-1 2nd Ed.) Licensed
- ISO** 9001 and ISO 14001 certified manufacturing facilities

Description

The 120A Digital TeraDLynx[™] power modules are non-isolated dc-dc converters that can deliver up to 120A of output current. These modules operate over a 7 to 14Vdc input range and provide a precisely regulated output voltage from 0.4 to 1.5Vdc. The output voltage is programmable via an external resistor and/or PMBus control. Features include a digital interface using the PMBus protocol, remote On/Off, adjustable output voltage, Power Good signal and overcurrent, overvoltage and overtemperature protection. The PMBus interface supports a range of commands to both control and monitor the module. The module also includes a real time compensation loop that allows optimizing the dynamic response of the converter to match the load with reduced amount of output capacitance leading to savings on cost and PWB area.

- $^{\star}~$ $\it UL$ is a registered trademark of Underwriters Laboratories, Inc.
- † CSA is a registered trademark of Canadian Standards Association.
- ‡ VDE is a trademark of Verband Deutscher Elektrotechniker e.V.
- ** ISO is a registered trademark of the International Organization of Standards
- # The PMBus name and logo are registered trademarks of the System Management Interface Forum (SMIF)

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are only absolute stress ratings, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the technical requirements. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Device	Symbol	Min	Max	Unit
Input Voltage - Continuous	All	V _{IN}	-0.3	15	V
SEQ, ADDR0, ADDR1, RTUNE, RTRIM, SYNC, VS+, ON/OFF	All		-0.3	3.6	V
CLK, DATA, SMBALERT#	All		-0.3	3.6	V
Operating Ambient Temperature	All	T _A	-40	85	°C
(see Thermal Considerations section)					
Storage Temperature	All	T _{stg}	-55	125	°C

Electrical Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions.

Parameter	Device	Symbol	Min	Тур	Max	Unit
Operating Input Voltage	All	V _{IN}	7	_	14	Vdc
Maximum Input Current $(V_{IN}=7V \text{ to } 14V, I_0=I_{0, max})$	All	l _{IN,max}			29	Adc
Input No Load Current	$V_{O,set} = 0.6 \text{ Vdc}$	I _{IN,No load}		160		mA
$(V_{IN} = 12Vdc, I_0 = 0, module enabled)$	V _{O,set} = 1.5Vdc	I _{IN1No load}		200		mA
Input Stand-by Current ($V_{IN} = 12Vdc$, module disabled)	All	I _{IN,stand-by}		62		mA
Inrush Transient	All	l²t		1		A ² s
Input Reflected Ripple Current, peak-to-peak (5Hz to 20MHz, 1µH source impedance; V _{IN} =0 to 14V, Io= I _{Omax} ; See Test Configurations)	All			5		mAp-p
Input Ripple Rejection (120Hz)	All			-54		dB

7Vdc –14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Electrical Specifications (continued)

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Voltage Set-point (with 0.1% tolerance external resistor used to set output voltage). Tolerances apply over output voltage range from 0.5 to 1.5V						
-40 to 85°C	All	$V_{O,set}$	-1.0		+1.0	$\% V_{O, set}$
0 to 85°C	All		-0.7		+0.7	% V _{O, set}
Output Voltage (Over all operating input voltage, resistive load, and temperature conditions until end of life)	All	$V_{o,set}$	-2.0		+2.0	$\% V_{0, set}$
Adjustment Range (selected by an external resistor)	All	V _{OUT}	0.4		1.5	Vdc
PMBus Adjustable Output Voltage Range	All	V _{OUT}	0.4		1.5	%V _{O,set}
PMBus Output Voltage Adjustment Step Size	All			98		μV
Remote Sense Range	All				0.3	Vdc
Output Regulation						
Line (V _{IN} =V _{IN, min} to V _{IN, max})	All				5	mV
Load ($I_0=I_{0, min}$ to $I_{0, max}$)	All				5	mV
Temperature ($T_{ref}=T_{A, min}$ to $T_{A, max}$)	All				5	mV
Output Ripple and Noise on nominal output ($V_{IN}=V_{IN,nom}$ and $I_{0}=I_{0,min}$ to $I_{0,max}$ Co = 1500 μF						
Peak-to-Peak (Full bandwidth)					30	mV_{pk-pk}
RMS (Full bandwidth)	All				12	mV_{rms}
External Capacitance						
Minimum output capacitance	All	$C_{O,min}$	1500		_	μF
Maximum output capacitance	All	C _{O, max}	_	_	40000	μF
Output Current (in either sink or source mode)	All	lo	0.005*		120	Adc
Output Current Limit Inception (Hiccup Mode) (current limit does not operate in sink mode)	All	I _{O, lim}		110		% I _{o,max}
Output Short-Circuit Current	All	$I_{O1,s/c}$, $I_{O1,s/c}$		40		Arms
(V ₀ ≤250mV) (Hiccup Mode)						
Efficiency	$V_{O,set} = 0.6Vdc$	η		88.2		%
	$V_{O, set} = 0.8Vdc$	η		90.9		%
V _{IN} = 12Vdc, T _A =25°C	$V_{O,set} = 1.0Vdc$	η		92.1		%
$I_0 = I_{0, \text{ max}}, V_0 = V_{0, \text{set}}$	$V_{O,set} = 1.2Vdc$	η		93.0		%
	$V_{O, set} = 1.5 Vdc$	η		94.0		%
Switching Frequency	All	f_{sw}	-	400	-	kHz
Frequency Synchronization	All					
Synchronization Frequency Range	All		-15		+15	%
High-Level Input Voltage	All	V _{IH,SYNC}	2.5			V
Low-Level Input Voltage	All	V _{IL,SYNC}			1.1	V
Minimum Pulse Width, SYNC	All	tsync	256			ns

^{*} Minimum load on module should be 5mA

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

General Specifications

Parameter	Device	Min	Тур	Max	Unit
Calculated MTBF (Io=0.8Io, max, TA=40°C) Telecordia Issue 2 Method 1 Case 3	All		11,556,226		Hours
Weight - Module with SMT Pins			57 (2.01)		g (oz.)
Module with Through Hole Pins			59 (2.08)		g (oz.)

Feature Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.

Parameter	Device	Symbol	Min	Тур	Max	Unit
On/Off Signal Interface						
($V_{IN} \! = \! V_{IN,min}$ to $V_{IN,max}$; open collector or equivalent,						
Signal referenced to GND)						
Device Code with no suffix - Negative Logic (See Ordering Information)						
(On/OFF pin is open collector/drain logic input with						
external pull-up resistor; signal referenced to GND)						
Logic High (Module OFF)						
Input High Current	All	Іін	_	_	1	mA
Input High Voltage	All	VIH	2	_	V _{IN, max}	Vdc
Logic Low (Module ON)						
Input low Current	All	lıL	_	_	10	μΑ
Input Low Voltage	All	VIL	-0.2	_	0.4	Vdc
Device Code with suffix "4" - Positive Logic (See Ordering Information)						
(On/OFF pin is open collector/drain logic input with						
external pull-up resistor; signal referenced to GND)						
Logic High (Module ON)						
Input High Current	All	Іін	_	_	10	μΑ
Input High Voltage	All	VIH	2	_	V _{IN, max}	Vdc
Logic Low (Module OFF)						
Input low Current	All	lıL	_	_	10	μΑ
Input Low Voltage	All	VIL	-0.2	_	0.4	Vdc
Turn-On Delay and Rise Times						
$(V_{IN}=V_{IN, nom, Io}=I_{O, max}, V_{O} \text{ to within } \pm 1\% \text{ of steady state})$						
Case 1: On/Off input is enabled and then input power is applied (delay from instant at which $V_{IN}=V_{IN,min}$ until $V_0=10\%$ of V_0,set)	All	Tdelay	_	10	_	ms
Case 2: Input power is applied for at least one second and then the On/Off input is enabled (delay from instant at which Von/Off is enabled until Vo = 10% of Vo, set)	All	Tdelay	_	2	_	ms
Output voltage Rise time (time for V_0 to rise from 10% of V_0 , set to 90% of V_0 , set)	All	Trise	_	5	_	msec
Output voltage overshoot (T_A = 25°C V_{IN} = $V_{IN, min}$ to $V_{IN, mox, Io}$ = $I_{O, min}$ to $I_{O, max}$) With or without maximum external capacitance		Output			3.0	% V _{O, set}
Over Temperature Protection (See Thermal Considerations section)	All	T _{ref}		135		°
PMBus Over Temperature Warning Threshold	All	Twarn		125		°C

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Feature Specifications (cont.)

Parameter		Device	Symbol	Min	Тур	Max	Units
Tracking Accuracy	(Power-Up: 0.5V/ms)	All	VSEQ -Vo			100	mV
	(Power-Down: 0.5V/ms)	All	VSEQ -Vo			100	mV
($V_{IN,min}$ to $V_{IN,max}$; $I_{O,min}$ to	($V_{IN,min}$ to $V_{IN,max}$; $I_{O,min}$ to $I_{O,max}$ V_{SEQ} $<$ V_{O})						
Input Undervoltage Loc	kout						
Turn-on Threshold		All				7	Vdc
Turn-off Threshold	All		6.75			Vdc	
Hysteresis					0.25		Vdc
PMBus Adjustable Input Under Voltage Lockout Thresholds				7		14	Vdc
Resolution of Adjusta	ble Input Under Voltage Threshold	All				5.8	mV
PGOOD (Power Good)							
Signal Interface Oper	n Drain, $V_{\text{supply}} \leq 5VDC$						
Overvoltage threshol	d for PGOOD ON	All			110		$%V_{O,set}$
Overvoltage threshol	d for PGOOD OFF	All			110		%V _{O, set}
Undervoltage thresh	Undervoltage threshold for PGOOD ON				90		%V _{O, set}
Undervoltage threshold for PGOOD OFF		All			90		%V _{O, set}
Pulldown resistance of PGOOD pin						2	Ω
Sink current capabilit	ry into PGOOD pin	All				50	mA

8Vdc –14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Digital Interface Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
PMBus Signal Interface Characteristics						
Input High Voltage (CLK, DATA)		VIH	2.1			V
Input Low Voltage (CLK, DATA)		VIL			1.1	V
Input high level current (CLK, DATA)		lih			0.5	μΑ
Input low level current (CLK, DATA)		I _{IL}			4	mA
Output Low Voltage (CLK, DATA, SMBALERT#)	I _{OUT} =4mA	Vol			0.25	V
Output high level open drain leakage current (DATA, SMBALERT#)	V _{OUT} =3.6V	Іон	5		55	nA
Pin capacitance		Со			10	pF
PMBus Operating frequency range	Slave Mode	Fрмв	10		1000	kHz
Data hold time		thd:dat		0		ns
Data setup time		tsu:dat		100		ns
Measurement System Characteristics	•					
Read delay time		tdly		110		μs
Output current measurement range		I _{RNG}	0		135	Α
Output current measurement resolution		IRES		250		mA
Output current measurement accuracy	-40°C to +85°C	lacc			±5	% of Io,max
V _{OUT} measurement range		Vout	0		2.0	V
V _{OUT} measurement accuracy		V _{OUT(gain)}		±1		% of Vo,max
V _{OUT} measurement resolution		V _{OUT(res)}		0.61		mV
V_{IN} measurement range		V _{IN}	0		16	V
V _{IN} measurement accuracy		V _{IN(gain)}		±2		%
V _{IN} measurement resolution		V _{IN(res)}		5.8		mV
Temperature measurement range		TMEAS	-25		150	°C
Temperature measurement accuracy		T _{MEAS(gain)}	-8		8	°C
Temperature measurement resolution		T _{MEAS(res)}		0.08		°C

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Characteristic Curves

The following figures provide typical characteristics for the 120A Digital TeraDLynx[™] at 0.6Vo and 25°C.

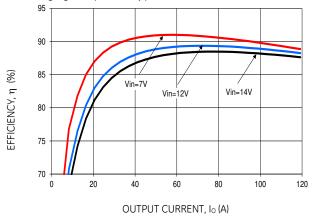


Figure 1. Converter Efficiency versus Output Current.

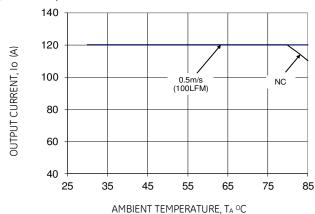
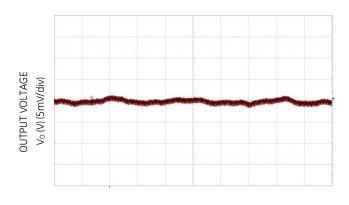
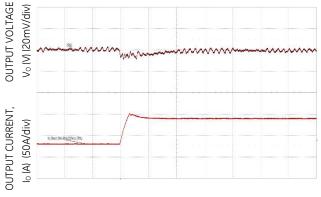




Figure 2. Derating Output Current versus Ambient Temperature and Airflow.

TIME, t (50µs/div)

Figure 3. Typical output ripple and noise ($C_0=12x47\mu F$ ceramic + $10x470\mu F$ polymer, $V_{IN}=12V$, $I_0=I_{0,max}$).

TIME, t (200µs /div)

Figure 4. Transient Response to Dynamic Load Change from 25% to 75% at 12Vin, Co= 12 × 47 μ F + 10 × 1000 μ F, R_{TUNE} = 3.01k Ω .

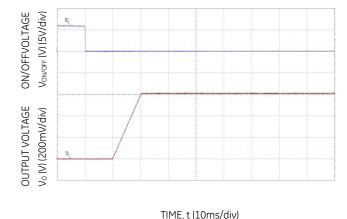
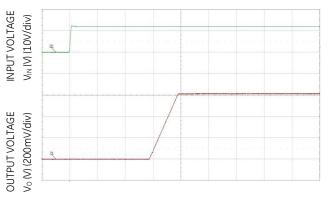



Figure 5. Typical Start-up Using On/Off Voltage ($I_0 = I_{0,max}$).

TIME, t (10ms/div)

Figure 6. Typical Start-up Using Input Voltage ($V_{IN} = 12V$, $I_0 = I_{0,max}$).

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Characteristic Curves

The following figures provide typical characteristics for the 120A TeraDLynx[™] at 0.8Vo and 25°C

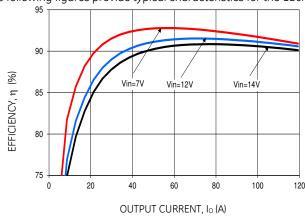
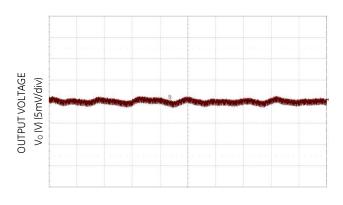
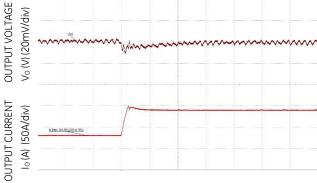




Figure 7. Converter Efficiency versus Output Current.

Figure 8. Derating Output Current versus Ambient Temperature and Airflow.

TIME, t (50 μ s/div) Figure 9. Typical output ripple and noise (C_O=12x47 μ F ceramic + 10x470 μ F polymer, VIN = 12V, Io = Io,max,)

Figure 10. Transient Response to Dynamic Load Change from 25% to 75% at 12Vin, Co= 12 x 47 μ F + 10 x 1000 μ F, R_{TUNE} = 3.01k Ω .

TIME, t (200µs /div)

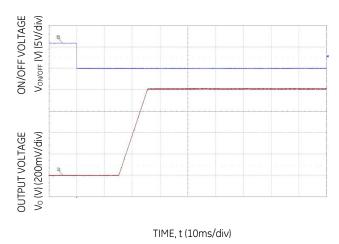
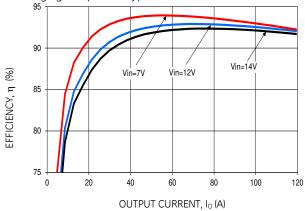


Figure 11. Typical Start-up Using On/Off Voltage (Io = Io,max).

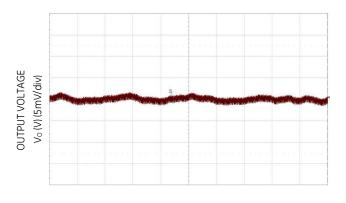

Figure 12. Typical Start-up Using Input Voltage ($V_{IN} = 12V$, $I_0 = I_{O,max}$).

TIME, t (10ms/div)

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Characteristic Curves

The following figures provide typical characteristics for the 120A Digital TeraDLynx[™] at 1.0Vo and 25°C.



120 OUTPUT CURRENT, Io (A) 100 0.5m/s (100LFM) NĆ 80 60 40 25 35 45 55 65 75 85 AMBIENT TEMPERATURE, TA OC

Figure 13. Converter Efficiency versus Output Current.

Figure 14. Derating Output Current versus Ambient Temperature and Airflow.

140

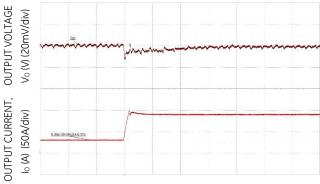


Figure 15. Typical output ripple and noise ($C_0=12x47\mu F$ ceramic + $10x470\mu F$ polymer, $V_{IN}=12V$, $I_0=I_{0,max}$)

TIME, t (50µs/div)

Figure 16. Transient Response to Dynamic Load Change from 25% to 75% at 12Vin, Co= 12 x 47µF + 10 x 1000µF, R_{TUNE} = 3.01k $\Omega.$

TIME, t (200 µs /div)

Figure 17. Typical Start-up Using On/Off Voltage (Io = Io,max).

Figure 18. Typical Start-up Using Input Voltage ($V_{IN} = 12V$, $I_0 = I_{O,max}$).

TIME, t (10ms/div)

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Characteristic Curves

The following figures provide typical characteristics for the 120A Digital TeraDLynx[™] at 1.2Vo and 25°C.

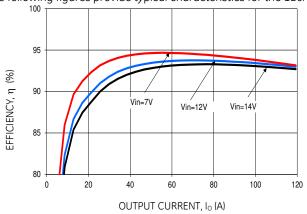


Figure 19. Converter Efficiency versus Output Current.

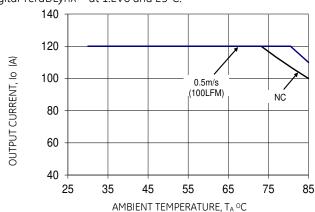
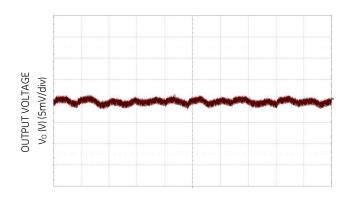
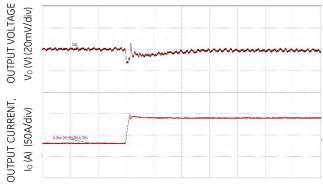




Figure 20. Derating Output Current versus Ambient Temperature and Airflow.

TIME, t (50µs/div)

Figure 21. Typical output ripple and noise ($C_0=12x47\mu F$ ceramic + $10x470\mu F$ polymer, $V_{IN}=12V$, $I_0=I_{0,max}$)

TIME, t (200µs /div)

Figure 22. Transient Response to Dynamic Load Change from 25% to 75% at 12Vin, Co= 12 x 47 μ F + 10 x 1000 μ F, R_{TUNE} = 3.01k Ω .

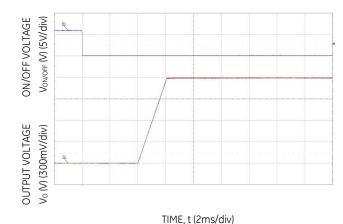


Figure 23. Typical Start-up Using On/Off Voltage ($I_0 = I_{o,max}$).

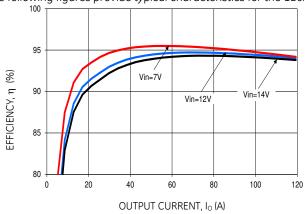

TIME, t (10ms/div)

Figure 24. Typical Start-up Using Input Voltage ($V_{IN}=12V$, $I_{o}=I_{o,max}$).

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Characteristic Curves

The following figures provide typical characteristics for the 120A Digital TeraDLynx[™] at 1.5Vo and 25°C.

140 120 OUTPUT CURRENT, Io (A) 100 0.5m/s (100LFM) NC 80 60 40 25 75 35 45 55 65 85 AMBIENT TEMPERATURE, TA °C

Figure 25. Converter Efficiency versus Output Current.

Figure 26. Derating Output Current versus Ambient Temperature and Airflow.

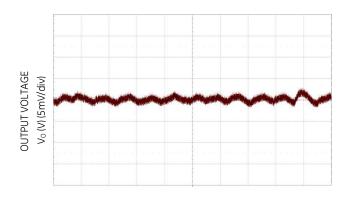


Figure 27. Typical output ripple and noise ($C_0=12x47\mu F$ ceramic + $10x470\mu F$ polymer, $V_{IN}=12V$, $I_0=I_{0,max}$)

TIME, t (50µs/div)

Figure 28. Transient Response to Dynamic Load Change from 25% to 75% at 12Vin, Co= 12 x 47 μ F + 10 x 1000 μ F, R_{TUNE} = 3.01k Ω .

TIME, t (200µs /div)

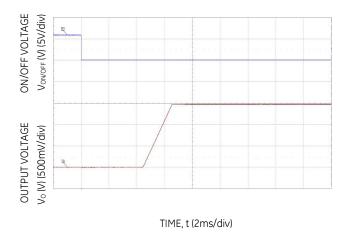


Figure 29. Typical Start-up Using On/Off Voltage (Io = Io, max).

Figure 30. Typical Start-up Using Input Voltage ($V_{IN}=12V$, $I_0=I_{0,max}$).

TIME, t (2ms/div)

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Design Considerations

Input Filtering

The 120A TeraDLynx[™] module should be connected to a low ac-impedance source. A highly inductive source can affect the stability of the module. An input capacitance must be placed directly adjacent to the input pins of the module, to minimize input ripple voltage and ensure module stability.

To minimize input voltage ripple, ceramic capacitors are recommended at the input of the module. Figure 31 shows the input ripple voltage for various output voltages at 120A of load current with 4x470 + 12x22 + 12x4.7 μF and 2x470 + 6x22 + 12x4.7 μF input capacitor combinations.

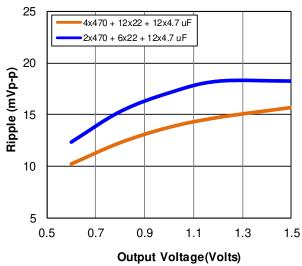


Figure 31. Input ripple voltage for various output voltages with two input capacitor combinations at 120A load. Input voltage is 12V.

Output Filtering

These modules are designed for low output ripple voltage and will meet the maximum output ripple specification with minimum of $12\times22~\mu\text{F}$ ceramic capacitors at the output of the module. However, additional output filtering may be required by the system designer for a number of reasons. First, there may be a need to further reduce the output ripple and noise of the module. Second, the dynamic response characteristics may need to be customized to a particular load step change.

To reduce the output ripple and improve the dynamic response to a step load change, additional capacitance at the output can be used. Low ESR polymer and ceramic capacitors are recommended to improve the dynamic response of the module. Figure 32 provides output ripple information for capacitance of ~3574uF (47µF (1210 ceramic) x 12 + 10µF (0805 ceramic) + 0.1µF (0402) x4 + 1000µF (polymer) x 3) at various Vo and a full load current of 120A. For stable operation of the module, limit the capacitance to less than the maximum output capacitance as specified in the electrical specification table. Optimal

performance of the module can be achieved by using the Tunable $Loop^{TM}$ feature described later in this data sheet.

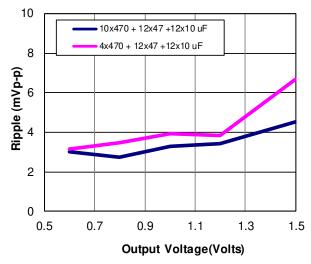


Figure 32. Peak to peak output ripple voltage for various output voltages with external capacitors at the output (120A load). Input voltage is 12V.

Safety Considerations

For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL 60950-1 2nd, CSA C22.2 No. 60950-1-07, DIN EN 60950-1:2006 + A11 (VDE0805 Teil 1 + A11):2009-11; EN 60950-1:2006 + A11:2009-03.

For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV.

The input to these units is to be provided with a slow-blow fuse. When the input voltage is ≤ 8V, the recommendation is to use two 25A Littelfuse 456 series or equivalent fuses in parallel. For input voltages > 8V, a single 40A Littelfuse series 456 or equivalent fuse is recommended.

120A TeraDLynxTM: Non-Isolated DC-DC Power Modules

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Analog Feature Descriptions

Remote On/Off

The TeraDLynx 120A module can be turned ON and OFF either by using the ON/OFF pin (Analog interface) or through the PMBus interface (Digital). The module can be configured in a number of ways through the PMBus interface to react to the ON/OFF input:

- Module ON/OFF can controlled only through the analog interface (digital interface ON/OFF commands are ignored)
- Module ON/OFF can controlled only through the PMBus interface (analog interface is ignored)
- Module ON/OFF can be controlled by either the analog or digital interface

The default state of the module (as shipped from the factory) is to be controlled by the analog interface only. If the digital interface is to be enabled, or the module is to be controlled only through the digital interface, this change must be made through the PMBus. These changes can be made and written to non-volatile memory on the module so that it is remembered for subsequent use.

Analog On/Off

The 120A Digital TeraDLynx[™] power modules feature an On/Off pin for remote On/Off operation. With the Negative Logic On/Off option, (see Ordering Information), the module turns OFF during logic High and ON during logic Low. The On/Off signal should be always referenced to ground. Leaving the On/Off pin disconnected will turn the module ON when input voltage is present. With the positive logic on/off option, the module turns ON during logic high and OFF during logic low.

Digital On/Off

Please see the Digital Feature Descriptions section.

Monotonic Start-up and Shutdown

The module has monotonic start-up and shutdown behavior on the output for any combination of rated input voltage, output current and operating temperature range.

Startup into Pre-biased Output

The module will start into a pre biased output on output as long as the pre bias voltage is 0.5V less than the set output voltage.

Analog Output Voltage Programming

The output voltage of the module is programmable to any voltage from 0.4 to 1.5Vdc, as shown in Table 1, by connecting a resistor between the Trim and SIG_GND pins of the module as shown in Fig 33.

Without an external resistor between the Trim pin and SIG_GND pins, the output of the module will be 0.1 Vdc. The value of the trim resistor, R_{Trim} for a desired output voltage, should be selected as shown in Table 1.

The trim resistor is only determined during module initialization and hence cannot be used for dynamic output voltage adjustment

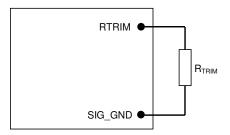


Figure 33. Circuit configuration for programming output voltage using an external resistor.

Table 1

V _{O, set}	Rtrim (Ω)	V _{O, set} (V)	Rtrim (Ω)	V _{O, set} (V)	Rtrim (Ω)
0.400	665	0.800	1740	1.200	5900
0.420	706	0.820	1820	1.220	6420
0.440	741	0.840	1930	1.240	6980
0.460	787	0.860	2030	1.260	7680
0.480	825	0.880	2130	1.280	8450
0.500	866	0.900	2230	1.300	9420
0.520	909	0.920	2340	1.320	10400
0.540	953	0.940	2460	1.340	11700
0.560	1000	0.960	2610	1.360	13500
0.580	1040	0.980	2710	1.380	15800
0.600	1090	1.000	2870	1.400	18900
0.620	1140	1.020	3050	1.420	23200
0.640	1180	1.040	3240	1.440	29800
0.660	1230	1.060	3480	1.460	40200
0.680	1290	1.080	3700	1.480	60400
0.700	1330	1.100	3920	1.500	115000
0.720	1380	1.120	4220		
0.740	1470	1.140	4530		
0.760	1560	1.160	4990		-
0.780	1640	1.180	5360		-

Digital Output Voltage Adjustment

Please see the Digital Feature Descriptions section.

Remote Sense

The power module has a differential Remote Sense feature to minimize the effects of distribution losses by regulating the voltage between the sense pins (VS+ and VS-) for the output. The voltage drop between the sense pins and the VOUT and GND pins of the module should not exceed 0.3V.

Digital Output Voltage Margining

Please see the Digital Feature Descriptions section.

120A TeraDLynxTM: Non-Isolated DC-DC Power Modules

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Output Voltage Sequencing

The power module includes a sequencing feature, EZ-SEQUENCE that enables users to implement various types of output voltage sequencing in their applications. This is accomplished via an additional sequencing pin. When not using the sequencing feature, leave it unconnected.

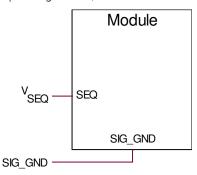


Figure 34. Circuit showing connection of the sequencing signal to the SEQ pin.

When the sequencing voltage is applied to the SEQ pin, the output voltage tracks this voltage until the output reaches the set-point voltage. The final value of the sequencing voltage must be set higher than the set-point voltage of the module. The output voltage follows the sequencing voltage on a one-to-one basis. By connecting multiple modules together, multiple modules can track their output voltages to the voltage applied on the SEQ pin.

The module's output can track the SEQ pin signal with slopes of up to 0.5V/msec during power-up or power-down.

To initiate simultaneous shutdown of the modules, the SEQ pin voltage is lowered in a controlled manner. The output voltage of the modules tracks the voltages below their setpoint voltages on a one-to-one basis. A valid input voltage must be maintained until the tracking and output voltages reach ground potential.

Digital Sequencing

The module can support digital sequencing by allowing control of the turn-on delay and rise times as well as turn-off and fall times.

Digital Output Voltage Margining

Please see the Digital Feature Descriptions section.

Overcurrent Protection (OCP)

To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting circuitry on output and can endure current limiting continuously. The module overcurrent response is non-latching shutdown with automatic recovery. OCP response time is programmable through manufacturer specific commands. The unit operates normally once the output current is brought back into its specified range.

Digital Adjustable Overcurrent Warning

Please see the Digital Feature Descriptions section.

Overtemperature Protection

To provide protection in a fault condition, the unit is equipped with a thermal shutdown circuit. The unit will shut down if the overtemperature threshold of 135 °C (typ) is exceeded at the thermal reference point $T_{\text{ref.}}$ Once the unit goes into thermal shutdown it will then wait to cool before attempting to restart.

Digital Adjustable Overcurrent Warning/Shutdown

Please see the Digital Feature Descriptions section.

Digital Temperature Status via PMBus

Please see the Digital Feature Descriptions section.

Digitally Adjustable Output Over and Under Voltage Protection

Please see the Digital Feature Descriptions section.

Input Undervoltage Lockout

At input voltages below the input undervoltage lockout limit, module operation for the associated output is disabled. The module will begin to operate at an input voltage above the undervoltage lockout turn-on threshold.

Digitally Adjustable Input Undervoltage Lockout

Please see the Digital Feature Descriptions section.

Digitally Adjustable Power Good Thresholds

Please see the Digital Feature Descriptions section.

Synchronization

The module switching frequency is capable of being synchronized to an external signal frequency within a specified range. Synchronization is done by using the external signal applied to the SYNC pin of the module as shown in Fig. 35, with the converter being synchronized by the rising edge of the external signal. The Electrical Specifications table specifies the requirements of the external SYNC signal. If the SYNC pin is not used, the module should free run at the default switching frequency.

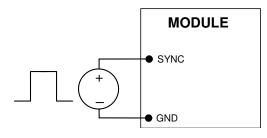


Figure 35. External source connections to synchronize switching frequency of the module.

Measuring Output Current, Output Voltage and Input Voltage

Please see the Digital Feature Descriptions section.

Digital Compensator

120A TeraDLynxTM: Non-Isolated DC-DC Power Modules

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

The TJT120 module uses digital control to regulate the output voltage. As with all POL modules, external capacitors are usually added to the output of the module for two reasons: to reduce output ripple and noise and to reduce output voltage deviations from the steady-state value in the presence of dynamic load current changes. Adding external capacitance however affects the voltage control loop of the module, typically causing the loop to slow down with sluggish response. Larger values of external capacitance could also cause the module to become unstable.

The TJT120 comes with default compensation values programmed into the non-volatile memory of the module. These digital compensation values can be adjusted externally to optimize transient response and also ensure stability for a wide range of external capacitance, as well as with different types of output capacitance. This can be done by two different methods.

- By allowing the user to select among several pre-tuned compensation choices to select the one most suited to the transient response needs of the load. This selection is made via a resistor RTune connected between the RTUNE and SIG_GND pins as shown in Fig. 35. Table 2 shows various pre-tuned compensation combinations recommended for various external capacitor combinations.
- Using PMBus to change compensation parameters in the module.

Note that during initial startup of the module, compensation values that are stored in non-volatile memory are used. If a resistor RTune is connected to the module, then the compensation values are changed to ones that correspond to the value of RTUNE. If RTUNE is open however, no change in compensation values is made. Finally, if the user chooses to do so, they can overwrite the compensation values via PMBus commands.

Recommended values of R_{TUNE} for different output capacitor combinations are given in Table 2. If no RTUNE is used, the default compensation values are used.

The TJT120 pre-tuned compensation can be divided into three different banks (COMP1, COMP2, COMP3) that are available to the user to compensate the control loop for various values and combinations of output capacitance and to obtain reliable and stable performance under different conditions. Each bank consists of 20 different sets of compensation coefficients pre-calculated for different values of output capacitance. The three banks are set up as follows:

 COMP1: Recommended for the case where all of the output capacitance is composed of only ceramic

- capacitors. The range of external output capacitance is from 1470 μF to a maximum value of 17640 μF)
- COMP2: For the most commonly used mix of ceramic and polymer type capacitors that have higher output capacitance in a smaller size. The range of output capacitance is from 2564 μ F to a maximum of 30564 μ F. This is the combination of output capacitance and compensation that can achieve the best transient response at lowest cost and smallest size. For example, with the maximum output capacitance of $12 \times 47 \mu$ F ceramics + $25 \times 1000 \mu$ F polymer capacitors, and selecting RTUNE = $5.36 k \Omega$, transient deviation can be as low as 25 mV, for a 50% load step (0 to 85A).
- COMP3: Suitable for a mix of ceramic and higher ESR polymers or electrolytic capacitors, with output capacitance ranging from a minimum of 2204 µF to a maximum of 30084 µF.

Selecting R_{TUNE} according to Table 2 will ensure stable operation of the module with sufficient stability margin as well as yield optimal transient response.

In applications with tight output voltage limits in the presence of dynamic current loading, additional output capacitance will be required. Table 3 lists recommended values of R_{TUNE} in order to meet 2% output voltage deviation limits for some common output voltages in the presence of an 60A to 120A step change (50% of full load), with an input voltage of 12V. Please contact your GE technical representative to obtain more details of this feature as well as for guidelines on how to select the right value of external RTUNE to tune the module for best transient performance and stable operation for other output capacitance values. Simulation models are also available via the GE Power Module Wizard to predict stability characteristics and transient response.

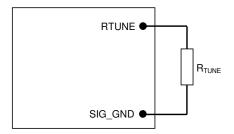


Figure 36. Circuit diagram showing connection of R_{TUNE} to tune the control loop of the module.

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Table 2. Recommended R_{TUNE} Compensation.

Output Capacitance Type	Number of Output Capacitors**	Total Output Capacitance (µF)**	R _{TUNE} resistor (Ω)	R _{TUNE} Index	KD	KI	КР	AP
	efault Compensation Value	es	OPEN		375	2	37	150
Ceramic	10 × 47μF + 10 × 100μF	1398	29.1	0	375	2	37	150
Ceramic	12 x 47µF + 12 x 100µF	1644	88.7	1	441	3	44	150
Ceramic	14 × 47µF + 14 × 100µF	1890	150	2	506	3	51	150
Ceramic	16 × 47µF + 16 × 100µF	2136	213	3	572	3	57	150
Ceramic	19 x 47μF + 19 x 100μF	2505	280	4	671	3	67	150
Ceramic	22 x 47µF + 22 x 100µF	2874	348	5	770	4	77	150
Ceramic	25 x 47µF + 25 x 100µF	3243	417	6	869	4	87	150
Ceramic	28 × 47μF + 28 × 100μF	3612	493	7	968	4	97	150
Ceramic	31 x 47µF + 31 x 100µF	3981	569	8	1067	4	107	150
Ceramic	34 x 47µF + 34 x 100µF	4350	642	9	1166	4	117	150
Ceramic	38 x 47μF + 38 x 100μF	4842	723	10	1297	5	130	150
Ceramic	42 x 47μF + 42 x 100μF	5334	806	11	1429	5	143	150
Ceramic	48 x 47μF + 48 x 100μF	6072	898	12	1627	5	163	150
Ceramic	55 x 47μF + 55 x 100μF	6933	938	13	1858	5	186	150
Ceramic	63 x 47μF + 63 x 100μF	7917	1090	14	2121	6	212	150
Ceramic	72 x 47µF + 72 x 100µF	9024	1180	15	2418	6	242	150
Ceramic	82 x 47μF + 82 x 100μF	10254	1290	16	2748	7	275	150
Ceramic	93 x 47μF + 93 x 100μF	11607	1400	17	3110	7	311	150
Ceramic	105 x 47μF + 105 x 100μF	13083	1520	18	3506	7	351	150
Ceramic	120 x 47μF + 120 x 100μF	14928	1640	19	4000	8	400	150
Ceramic + Polymer	12 x 47μF + 2 x 1000μF	2672	1760	20	501	3	300	220
Ceramic + Polymer	12 x 47μF + 3 x 1000μF	3672	1890	21	688	3	413	220
Ceramic + Polymer	12 x 47μF + 4 x 1000μF	4672	2030	22	876	3	525	220
Ceramic + Polymer	12 x 47μF + 5 x 1000μF	5672	2150	23	1063	4	638	220
Ceramic + Polymer	12 x 47μF + 6 x 1000μF	6672	2320	24	1250	4	750	220
Ceramic + Polymer	12 x 47μF + 7 x 1000μF	7672	2460	25	1438	4	860	220
Ceramic + Polymer	12 x 47μF + 8 x 1000μF	8672	2640	26	1625	5	975	220
Ceramic + Polymer	12 x 47μF + 9 x 1000μF	9672	2840	27	1813	5	1088	220
Ceramic + Polymer	12 x 47μF + 10 x 1000μF	10672	3010	28	2000	5	1200	220
Ceramic + Polymer	12 x 47μF + 11 x 1000μF	11672	3200	29	2187	5	1312	220
Ceramic + Polymer	12 x 47μF + 12 x 1000μF	12672	3400	30	2375	5	1425	220
Ceramic + Polymer	12 x 47μF + 13 x 1000μF	13672	3650	31	2562	6	1537	220
Ceramic + Polymer	12 x 47μF + 15 x 1000μF	15672	3880	32	2937	6	1762	220
Ceramic + Polymer	12 x 47μF + 17 x 1000μF	17672	4120	33	3312	6	1987	220
Ceramic + Polymer	12 x 47μF + 19 x 1000μF	19672	4420	34	3687	7	2212	220
Ceramic + Polymer	12 x 47μF + 21 x 1000μF	21672	4700	35	4061	7	2437	220
Ceramic + Polymer	12 x 47μF + 23 x 1000μF	23672	5050	36	4436	7	2662	220
Ceramic + Polymer	12 x 47μF + 25 x 1000μF	25672	5360	37	4811	8	2887	220
Ceramic + Polymer	12 x 47μF + 27 x 1000μF	27672	5760	38	5186	8	3112	220
Ceramic + Polymer	12 x 47μF + 30 x 1000μF	30672	6120	39	5748	8	3449	220

^{**} Total output capacitance includes the capacitance inside the module is 4 x 47 μ F (3m Ω ESR).

Note: The capacitors used in the digital compensation Loop tables are $47\mu\text{F}/3~\text{m}\Omega$ ESR ceramic, $100u\text{F}/3.2m\Omega$ ceramic, $1000~\mu\text{F}/6m\Omega$ ESR polymer capacitor and $820u\text{F}/19m\Omega$ ESR Polymer capacitor.

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Table 2 (continued). RTUNE compensation table

Output Capacitance Type	Number of Output Capacitors**	Total Output Capacitance (µF)**	R _{TUNE} resistor (Ω)	R _{TUNE} Index	KD	KI	КР	AP
Ceramic + Electrolytic	12 x 47μF + 2 x 820μF	2312	6570	40	176	2	176	220
Ceramic + Electrolytic	12 x 47μF + 3 x 820μF	3312	7060	41	238	3	238	220
Ceramic + Electrolytic	12 x 47μF + 4 x 820μF	3952	7590	42	301	3	301	220
Ceramic + Electrolytic	12 x 47μF + 5 x 820μF	4772	8160	43	363	3	363	220
Ceramic + Electrolytic	12 x 47μF + 6 x 820μF	5592	8870	44	426	4	426	220
Ceramic + Electrolytic	12 x 47μF + 7 x 820μF	6412	9530	45	488	4	488	220
Ceramic + Electrolytic	12 x 47μF + 8 x 820μF	7312	10400	46	550	4	550	220
Ceramic + Electrolytic	12 x 47μF + 9 x 820μF	8052	11300	47	613	4	613	220
Ceramic + Electrolytic	12 x 47μF + 10 x 820μF	8872	12400	48	675	5	675	220
Ceramic + Electrolytic	12 × 47μF + 11 × 820μF	9692	13700	49	738	5	738	220
Ceramic + Electrolytic	12 x 47μF + 12 x 820μF	10512	15000	50	800	5	800	220
Ceramic + Electrolytic	12 x 47μF + 14 x 820μF	12152	16700	51	925	5	925	220
Ceramic + Electrolytic	12 x 47μF + 16 x 820μF	13792	18700	52	1050	6	1050	220
Ceramic + Electrolytic	12 × 47μF + 18 × 820μF	15432	21000	53	1174	6	1174	220
Ceramic + Electrolytic	12 x 47μF + 20 x 820μF	17072	24000	54	1299	6	1299	220
Ceramic + Electrolytic	12 × 47μF + 23 × 820μF	19532	28000	55	1486	7	1486	220
Ceramic + Electrolytic	12 x 47μF + 26 x 820μF	21992	33000	56	1674	7	1674	220
Ceramic + Electrolytic	12 × 47μF + 29 × 820μF	24452	40200	57	1861	8	1861	220
Ceramic + Electrolytic	12 × 47μF + 32 × 820μF	26912	50500	58	2048	8	2048	220
Ceramic + Electrolytic	12 × 47μF + 36 × 820μF	30192	68000	59	2298	8	2298	220

^{**} Total output capacitance includes the capacitance inside the module is 4 x 47 μ F (3m Ω ESR).

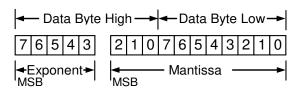
Note: The capacitors used in the digital compensation Loop tables are 47µF/3 m Ω ESR ceramic, 100uF/3.2m Ω ceramic, 1000 µF/6m Ω ESR polymer capacitor and 820uF/19m Ω ESR Electrolytic capacitor.

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Digital Feature Descriptions

PMBus Interface Capability

The 120A TeraDLynx power modules have a PMBus interface that supports both communication and control. The PMBus Power Management Protocol Specification can be obtained from www.pmbus.org. The modules support a subset of version 1.1 of the specification (see Table 4 for a list of the specific commands supported). Most module parameters can be programmed using PMBus and stored as defaults for later use.


Communication over the module PMBus interface supports the Packet Error Checking (PEC) scheme. The PMBus master must generate the correct PEC byte for all transactions, and check the PEC byte returned by the module.

The module also supports the SMBALERT# response protocol whereby the module can alert the bus master if it wants to talk. For more information on the SMBus alert response protocol, see the System Management Bus (SMBus) specification.

The module has non-volatile memory that is used to store configuration settings. Not all settings programmed into the device are automatically saved into this non-volatile memory, only those specifically identified as capable of being stored can be saved (see Table 4 for which command parameters can be saved to non-volatile storage).

PMBus Data Format

For commands that set thresholds, voltages or report such quantities, the module supports the "Linear" data format among the three data formats supported by PMBus. The Linear Data Format is a two-byte value with an 11-bit, two's complement mantissa and a 5-bit, two's complement exponent. The format of the two data bytes is shown below:

The value is of the number is then given by Value = Mantissa \times 2 Exponent

PMBus Addressing

The power module is addressed through the PMBus using a device address. The module supports 128 possible addresses (0 to 127 in decimal) which can be set using resistors connected from the ADDR0 and ADDR1 pins to SIG_GND. Note that some of these addresses (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12, 40, 44, 45, 55 in decimal) are reserved according to the SMBus specification and may not be useable. The address is set in the form of two octal (0 to 7) digits, with each pin setting one digit. The ADDR1 pin sets the high order digit and ADDR0 sets the low order digit. The resistor values suggested for each digit are shown in Table 3 (E96 series resistors are recommended). Note that if either address resistor value is outside the range specified in Table 4, the module will respond to address 127.

The user must know which I^2C addresses are reserved in a system for special functions and set the address of the module to avoid interfering with other system operations. Both 100kHz and 400kHz bus speeds are supported by the module. Connection for the PMBus interface should follow the High Power DC specifications given in section 3.1.3 in the SMBus specification V2.0 for the 400kHz bus speed or the

Low Power DC specifications in section 3.1.2. The complete SMBus specification is available from the SMBus web site, smbus.org.

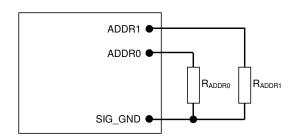


Figure 37. Circuit showing connection of resistors used to set the PMBus address of the module.

Table 3

				PMBus .	Address	Table								
		ADDR1 Resistor Values												
ADDRO Resistor Values	4.99K	15.4k	27.4K	41.2K	54.9K	71.5K	90.9K	110K	137K	162K	191K			
4.99K	1	13	25	37	49	61	73	85	97	109	121			
15.4K	2	14	26	38	50	62	74	86	98	110	122			
27.4K	3	15	27	39	51	63	75	87	99	111	123			
41.2K	4	16	28	40	52	64	76	88	100	112	124			
54.9K	5	17	29	41	53	65	77	89	101	113	125			
71.5K	6	18	30	42	54	66	78	90	102	114	126			
90.9K	7	19	31	43	55	67	79	91	103	115	127			
110K	8	20	32	44	56	68	80	92	104	116	64			
137K	9	21	33	45	57	69	81	93	105	117	64			
162K	10	22	34	46	58	70	82	94	106	118	64			
191K	11	23	35	47	59	71	83	95	107	119	64			
232K	12	24	36	48	60	72	84	96	108	120	64			

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Operation (01h)

This is a paged register. The OPERATION command can be used to turn the module on or off in conjunction with the ON/OFF pin input. It is also used to margin up or margin down the output voltage

PMBus Enabled On/Off

The module can also be turned on and off via the PMBus interface. The OPERATION command is used to actually turn the module on and off via the PMBus, while the ON_OFF_CONFIG command configures the combination of analog ON/OFF pin input and PMBus commands needed to turn the module on and off. Bit [7] in the OPERATION command data byte enables the module, with the following functions:

0 : Output is disabled 1 : Output is enabled

This module uses the lower five bits of the ON_OFF_CONFIG data byte to set various ON/OFF options as follows:

Bit Position	4	3	2	1	0
Access	r/w	r/w	r/w	r	r
Function	PU	CMD	CPR	POL	CPA
Default Value	1	0	1	×	1

PU: Sets the default to either operate any time input power is present or for the ON/OFF to be controlled by the analog ON/OFF input and the PMBus OPERATION command. This bit is used together with the CP, CMD and ON bits to determine startup.

Bit Value	Action	
0	Module powers up any time power is present regardless of state of the analog ON/OFF pin	
1	Module does not power up until commanded by the analog ON/OFF pin and the OPERATION command as programmed in bits [2:0] of the ON_OFF_CONFIG register.	

CMD: The CMD bit controls how the device responds to the OPERATION command.

Bit Value	Action
0	Module ignores the ON bit in the OPERATION command
1	Module responds to the ON bit in the OPERATION command

CPR: Sets the response of the analog ON/OFF pin. This bit is used together with the CMD, PU and ON bits to determine startup.

Bit Value	Action	
0	Module ignores the analog ON/OFF pin, i.e. ON/OFF is only controlled through the PMBUS via the OPERATION command	
1	Module requires the analog ON/OFF pin to be asserted to start the unit	

CPA: Sets the action of the analog ON/OFF pin when turning the controller OFF. This bit is internally read and cannot be modified by the user

PMBus Adjustable Soft Start Rise Time

The soft start rise time of module output is adjustable in the module via PMBus. The TON_RISE command can set the rise time in ms, and allows choosing soft start times between 0 and 1000ms. While this is the settable range, the actual rise time should be set considering the charging current of the output capacitors and starting current required by the load. Setting the TON_RISE too low could trigger the overcurrent protection. The default setting for TON_RISE is 5msec.

Output Voltage Adjustment Using the PMBus

Two PMBus commands are available to change the output voltage setting. The first, VOUT_COMMAND can set the output voltage directly. The second, VOUT_TRIM is used to apply an offset to the commanded output voltage.

Since the output voltage can be set using an external RTrim resistor as well, an additional PMBus command MFR_VOUT_SET_MODE is used to tell the module whether the VOUT_COMMAND is used to directly set output voltage or whether RTrim is to be used. If MFR_VOUT_SET_MODE is set to where bit position 7 is set at 1, then VOUT_COMMAND is ignored and output voltage is set solely by RTrim. If bit 7 of MFR_VOUT_SET_MODE is set to 0, then output voltage is set using VOUT_COMMAND, and the value of RTrim is only used at startup to set the output voltage.

The second output voltage adjustment command VOUT_TRIM works in either case to provide a fixed offset to the output voltage. This allows PMBus adjustment of the output voltage irrespective of how MFR_VOUT_SET_MODE is set and allows digital adjustment of the output voltage setting even when RTrim is used.

For all digital commands used to set or adjust the output voltage via PMBus, the resolution is 98µV.

Output Voltage Margining Using the PMBus

The output voltage of the module can be margined via PMBus between 0.4 and 1.5V. The margining voltage can be adjusted in $98\mu V$ steps.

PMBus Adjustable Overcurrent Warning

The module can provide an overcurrent warning via the PMBus. The threshold for the overcurrent warning can be set using the parameter IOUT_OC_WARN_LIMIT. This command uses the "Linear" data format with a two byte data word where the upper five bits [7:3] of the high byte represent the exponent and the remaining three bits of the high byte [2:0] and the eight bits in the low byte represent the mantissa. The value of the IOUT_OC_WARN_LIMIT can be stored to non-volatile memory using the STORE_DEFAULT_ALL command.

Temperature Status via PMBus

The module provides information related to temperature of the module through standardized PMBus commands. Commands READ_TEMPERATURE1, READ_TEMPERATURE_2 are mapped to module temperature and internal

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

temperature of the PWM controller, respectively. The temperature readings are returned in °C and in two bytes.

PMBus Adjustable Output Over, Under Voltage Protection

The module has output over and under voltage protection capability. The PMBus command VOUT_OV_FAULT_LIMIT is used to set the output over voltage threshold. The default value is configured to be 112.5% of the commanded output. The command VOUT_UV_FAULT_LIMIT sets the threshold that detects an output under voltage fault. The default values are 87.5% of the commanded output voltage. Both commands use two data bytes formatted in the Linear format.

PMBus Adjustable Input Undervoltage Lockout

The module allows adjustment of the input under voltage lockout and hysteresis. The command VIN_ON allows setting the input voltage turn on threshold, while the VIN_OFF command sets the input voltage turn off threshold. For the VIN_ON command possible values are 7 to 14V and for the VIN_OFF command, possible values are 6.75V to 14V. Both VIN_ON and VIN_OFF commands use the "Linear" format with two data bytes.

Measurement of Output Current, Output Voltage and Input Voltage

The module can measure key module parameters such as output current, output voltage and input voltage and provide this information through the PMBus interface.

Measuring Output Current Using the PMBus

The module measures output current by using a signal derived from the switching FET currents. The current gain factor is accessed using the IOUT_CAL_GAIN command, and consists of two bytes in the Linear data format. During manufacture, each module is calibrated by measuring and storing the current gain factor into non-volatile storage.

The current measurement accuracy is also improved by each module being calibrated during manufacture with the offset in the current reading. The IOUT_CAL_OFFSET command is used to store and read the current offset. The READ_IOUT command provides module average output current information. This command only supports positive output current, i.e. current sourced from the module. If the converter is sinking current a reading of 0 is provided. The READ_IOUT command returns two bytes of data in the Linear data format.

Measuring Output Voltage Using the PMBus

The module provides output voltage information using the READ_VOUT command. The command returns two bytes of data in Linear format.

Measuring Input Voltage Using the PMBus

The module provides input voltage information using the READ_VIN command. The command returns two bytes of data in the Linear format.

Reading the Status of the Module using the PMBus

The module supports a number of status information commands implemented in PMBus. A 1 in the bit position indicates the fault that is flagged.

STATUS_BYTE: Returns one byte of information with a summary of the most critical device faults.

Bit Position	Flag	Default Value
7	X	0
6	OFF	0
5	VOUT Overvoltage	0
4	IOUT Overcurrent	0
3	VIN Undervoltage	0
2	Temperature	0
1	CML (Comm. Memory Fault)	0
0	None of the above	0

STATUS_WORD: Returns two bytes of information with a summary of the module's fault/warning conditions.

Low Byte

Bit Position	Flag	Default Value
7	X	0
6	OFF	0
5	VOUT Overvoltage	0
4	IOUT Overcurrent	0
3	VIN Undervoltage	0
2	Temperature	0
1	CML (Comm. Memory Fault)	0
0	None of the above	0

High Byte

Bit Position	Flag	Default Value
7	VOUT fault or warning	0
6	IOUT fault or warning	0
5	X	0
4	X	0
3	POWER_GOOD# (is negated)	0
2	X	0
1	X	0
0	X	0

STATUS_VOUT: Returns one byte of information relating to the status of the module's output voltage related faults.

Bit Position	Flag	Default Value
7	VOUT OV Fault	0
6	VOUT_OV_WARNING	0
5	VOUT_UV_WARNING	0
4	VOUT UV Fault	0
3	X	0
2	X	0
1	X	0
0	X	0

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

STATUS_IOUT: Returns one byte of information relating to the status of the module's output voltage related faults.

Bit Position	Flag	Default Value
7	IOUT OC Fault	0
6	X	0
5	IOUT OC Warning	0
4	X	0
3	X	0
2	X	0
1	X	0
0	X	0

STATUS_TEMPERATURE: Returns one byte of information relating to the status of the module's temperature related faults.

Bit Position	Flag	Default Value
7	OT Fault	0
6	OT Warning	0
5	X	0
4	X	0
3	X	0
2	X	0
1	X	0
0	X	0

STATUS_CML: Returns one byte of information relating to the status of the module's communication related faults.

Bit Position	Flag	Default Value
7	Invalid/Unsupported Command	0
6	Invalid/Unsupported Data	0
5	Packet Error Check Failed	0
4	Memory Fault Detected	0
3	X	0
2	X	0
1	Other Communication Fault	0
0	X	0

MFR_SPECIFIC_00: Returns information related to the type of module and revision number. Bits [7:2] in the Low Byte indicate the module type (001101 corresponds to the TJT120 series of module), while bits [7:3] in the high byte indicate the revision number of the module.

Low	Byte
-----	------

Bit Position	Flag	Default Value
7:2	Module Name	001101
1:0	Reserved	10

High Byte

	3 7	
Bit Position	Flag	Default Value
7:3	Module Revision Number	None
2:0	Reserved	000

User-Programmable Compensation Coefficients

The output voltage control compensation coefficients can be changed by the user via PMBus commands. On startup, the module uses stored values of the four compensation parameters KD, KI, KP and ALPHA. If the module detects a valid value of RTUNE connected to the module, the values of KD, KI, KP and ALPHA are then changed to the appropriate values. Beyond this, the user can use the PMBus commands listed below to overwrite the values of KD, KP, KI and ALPHA.

MFR_SPECIFIC_KP: Allows the user to program the value of the KP compensation coefficient. The allowed range is - 32768 to 32767. The entire 16 bits are used to enter this range of integer values in two's complement binary format.

MFR_SPECIFIC_KI: Allows the user to program the value of the KI compensation coefficient. The allowed range is -32768 to 32767. The entire 16 bits are used to enter this range of integer values in two's complement binary format.

MFR_SPECIFIC_KD: Allows the user to program the value of the KD compensation coefficient. The allowed range is -32768 to 32767. The entire 16 bits are used to enter this range of integer values in two's complement binary format.

MFR_SPECIFIC_ALPHA: Allows the user to program the value of the ALPHA compensation coefficient. The allowed range is -256 to 256. The entire 16 bits are used to enter this range of integer values in two's complement binary format.

7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Summary of Supported PMBus Commands

Please refer to the PMBus 1.1 specification for more details of these commands. For the registers where a range is specified, any value outside the range is ignored and the module continues to use the previous value.

Table 4

Harr		Table 4														
Hex Code	Command		Non-Volatile Memory Storage													
		Turn Module on or	off. Also	used to	margir	n the ou	tput vol	tage				, ,				
		Format			l	Jnsiane	d Binar	V			1					
0.1	0050471041	Bit Position	7	6	5	4	3	2	1	0		1150				
01	OPERATION	Access	r/w	r	r/w	r/w	r/w	r/w	r	r		YES				
		Function	On	X	1, **		rgin	1, **	X	X						
		Default Value	1	0	0	0	0	0	X	X	•					
		Delault Value		U	U	U	U	U	^		j					
		Configures the ON/														
		PMBus commands	1													
0.2	ON OFF CONFIC	Bit Position	Format Unsigned Binary													
02	ON_OFF_CONFIG		7	6	5	4 r/w	3 r/w	2 r/w	1	0		YES				
		Access Function	r X	r	r X				r	r						
		Default Value	0	X 0	0	pu 1	cmd	cpr	Х	сра 1						
		Delault value	U	U	U	1	0	1	0	1						
03	CLEAR_FAULTS	Clear any fault bits			been se	et, also r	eleases	the SM	BALER	T# signa	l if the					
03	CLLAN_I AOLIS	device has been as	serting	it.												
		Used to control wri	ting to t	he mod	lule via I	PMBus.	Copies t	the curr	ent reg	jister set	ting in					
		the module whose			e match	es the v	value in	the dat	a byte i	into non	-volatile					
		memory (EEPROM)	on the r	nodule							_					
		Format				Jnsigne	d Binar									
		Bit Position	7	6	5	4	3	2	1	0						
	WRITE_PROTECT	Access	r/w	r/w	r/w	X	X	X	X	X						
		Function	bit7	bit6	bit5	Χ	Χ	X	X	Χ						
10		Default Value	0	0	0	X	X	Χ	Χ	X		1150				
10		Bit5: 0 – Enables all	YES													
		1 – Disables all						PERATIO	NC							
		and ON_OFF_CONFIG (bit 6 and bit7 must be 0) Bit 6: 0 – Enables all writes as permitted in bit5 or bit7														
								Tl								
		1 – Disables al OPERATION														
		Bit7: 0 – Enables all														
		1 – Disables all						Гсотт	and							
		(bit5 and bi			or the v	VII.E_I	NOTEC	COMM	aria							
11	CTODE DEFAULT ALL	Copies all current re			in the r	nodule	into nor	-volatil	e mem	ory (EEP	ROM)					
11	STORE_DEFAULT_ALL	on the module. Tak	es abou	it 50ms	for the	comma	nd to ex	kecute.		-						
12	RESTORE_DEFAULT_ALL	Restores all current		r setting	gs in the	e modul	e from v	/alues ii	n the m	odule n	on-					
12	NESTONE_DEFACE	volatile memory (EE	PROM)													
			The module has MODE set to Linear and Exponent set to -14. These values cannot be													
		changed	-		-	,	-	_	1 1		1					
20	VOUT MODE	Bit Position	7	6	5	4	3	2	1	0						
		Access	r	r	r	r	r	r	r	r						
		Function	0	Mode 0		1	s comp		Expone							
		Default Value	U	U	0	1	0	0	Т	0						
		Set desired output	voltage.	Only 1	6-bit un	signed ı	mantiss	a – imp	lied exp	onent o	of -14					
		per VOUT_MODE co														
		Format			U	nsigned	Mantis									
		Bit Position	15	14	13	12	11	10	9	8						
	VOUT_COMMAND	Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w						
21		Function					tissa					YES				
		Default Value				Vari	able									
		Bit Position	7	6	5	4	3	2	1	0						
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w						
		Function					tissa									
		Default Value				Vari	able									
											-					

7Vdc –14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Table 4 (continued)

Hex	Command	Brief Description												
Code		Apply a fixed offset	voltage	to the				o oithar	tho PTri	m rocic	tor or the	Memory Storage		
		VOUT_COMMAND.												
		Allowed range is ±3												
		Format			U	nsigned	Mantis	sa						
		Bit Position	15	14	13	12	11	10	9	8				
22	VOUT TRIM	Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w		YES		
		Function	0				tissa					. 20		
		Default Value Bit Position	7	0 6	5	0 4	3	2	0	0				
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w				
		Function	17 00	17 00	17 00		tissa	1700	17 00	17 00				
		Default Value	0	0	0	0	0	0	0	0				
		Applies an offset to	the cor	nmand	od outn	ut volta	an to co	dibrata	out orro	rc in co	tting modulo			
		output voltage (bet	ing module											
		command VOUT_C	nmand.											
		Format						nt binar						
		Bit Position	15	14	13	12	11	10	9	8				
23	VOUT CAL OFFSET	Access	r/w	r	r	r	r	r	r	r		YES		
23	VOU1_CAL_OLI 3L1	Function					tissa	1				ILJ		
		Default Value						calibra	tion		_			
		Bit Position Access	/	6 r/w	5 r/w	4 r/w	3 r/w	2 r/w	r/w	0 r/w				
		Function	r	I/W	I/W		tissa	1/W	I/W	I/W				
		Default Value		Var	iable ba			calibra	tion					
	VOUT_MARGIN_HIGH	Sets the target volt												
		VOUT_MODE command. Allowed range is 0.4 to 1.5V Format Linear, two's complement binary												
		Bit Position	15	14	13	12	11	10	y 9	8				
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w				
25		Function					tissa			•		YES		
		Default Value				Vari	able							
		Bit Position	7	6	5	4	3	2	1	0				
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w				
		Function					tissa							
		Default Value				Vari	able							
		Sets the target voltage for margining the output low. Implied exponent of -14 p												
		VOUT_MODE comm		lowed r	ange is	0.4 to 1	.5V.							
		Format						nt binar						
		Bit Position	15	14	13	12	11	10	9	8				
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w				
26	VOUT_MARGIN_LOW	Function Default Value					tissa					YES		
		Bit Position	7	6	5	Vari 4	able 3	2	1	0				
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w				
		Function	1, 00	1, 00	1 / ۷۷		tissa	17 VV	1, 00	1, 00				
		Default Value					able							
		-	•											
		Sets the value of in	put volt	age at v	vhich th	ie modu	ıle turns	on. Exp	onent i	s fixed o	at -6. Allowed			
		range is 7 to 14V.	ı			-1-	1	1. *			1			
		Format Pit Position	1 [nt binai		0				
		Bit Position Access	15 r	14 r	13 r	12 r	11 r	10 r	9 r/w	8 r/w				
35	VIN ON	Function	1		xponer				Mantiss			YES		
	VV_O1V	Default Value	1	1	0	1	0	0	0	1		1.25		
		Bit Position	7	6	5	4	3	2	1	0				
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w				
		Function				Man	tissa							
		Default Value	1	1	0	0	0	0	0	0				
\Box														

7Vdc –14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Table 4 (continued)

Hex Code	Command				Brief	Descrip	otion					Non-Volatile Memory Storage	
Couc		Sets the value of in	out volt	age at v	which th	a modu	la turno	off Evr	onent i	c fived (nt -6	Tremory Storage	
		Allowed range is 6.7											
		Format			inear, tv	vo's con	npleme	nt binar	У				
		Bit Position	15	14	13	12	11	10	9	8			
		Access	r	r	r	r	r	r	r/w	r/w			
36	VIN_OFF	Function			xponer				Mantiss			YES	
		Default Value	1	1	0	1	0	0	0	1			
		Bit Position	7	6	5	4	3	2	1	0			
		Access Function	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			
		Default Value	1	0	1	Mant	0	0	0	0			
					l		•			, v			
			Applies a gain correction to the READ_IOUT command results to calibrate out gain errors in module measurements of the output current. The number in this register is divided by 8192										
		to generate the cor								r is aivid	ied by 8192		
		Format	rection			vo's con							
		Bit Position	15	14	13	12	11	10	9	8			
		Access	r	r	r	r	r	r	r	r/w			
38	IOUT_CAL_GAIN	Function			ı	Inte	ger		ı			YES	
		Default Value		Var	iable bo	sed on	factory	calibra	tion				
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			
		Function				Inte							
		Default Value		Var	iable bo	sed on	factory	calibra	tion				
	IOUT_CAL_OFFSET	Returns the value o											
		current. The expone											
		Format				vo's con							
		Bit Position	15	14	13	12	11	10	9	8			
		Access	r	r	r	r	r	r/w	r	r			
39		Function Default Value	1	1	xponer 1	1	0		Mantisso Variable			YES	
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r	r	r/w	r/w	r/w	r/w	r/w	r/w			
		Function			.,,,,,	Man		.,,,,	.,,,,	., .,			
		Default Value											
		Sets the voltage lev						olied ex	ponent	of -14 p	er		
		Format	OUT_MODE command. Allowed range is 0.4 to 2V. Format Linear, two's compliment binary										
		Bit Position	15	14	Linear, t	12	mpiime 11	nt binai	9	8	-		
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w	1		
40	VOUT OV FAULT LIMIT	Function	1700	17 00	17 00		tissa	1 / VV	1700	17 00	1	YES	
40	V001_0V_1/\021_EII III	Default Value					able				1	123	
		Bit Position	7	6	5	4	3	2	1	0	1		
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			
		Function					tissa						
		Default Value				Vari	able						
		Instructs the modul	e on wh	nat actio	on to ta	ke in res	ponse t	o an ou	itput ov	ervoltad	ge fault		
		Format				Unsigne]		
		Bit Position	7	6	5	4	3	2	1	0]		
41	VOUT_OV_FAULT_RESPONSE	Access	r/w	r/w	r/w	r/w	r/w	r	r	r]	YES	
		Function	RSP [1]	RSP [0]	RS[2]	RS[1]	RS[0]	Х	Х	Х			
		Default Value	1	0	1	1	1	0	0	0]		
	l	·											

120A TeraDLynxTM: Non-Isolated DC-DC Power Modules 7Vdc -14Vdc input; 0.4Vdc to 1.5Vdc output; 120A Output Current

Table 4 (continued)

Hex Code	Command				Brief	Descri	ption					Non-Volatile Memory Storage	
		Sets the value of ou Exponent is fixed at	er-voltage.										
		Bit Position	15	14	inear, tv	12	11	10	у 9	8			
		Access	L I	r	L I	r	r	r/w	r/w	r/w			
42	VOUT OV WARN LIMIT	Function	'	1	xponer				Mantisso			YES	
42	VOOT_OV_VVARNI_LIMIT	Default Value			-vhouse		able	!	101111331	<u>, </u>		TLS	
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			
		Function	1700	17 00	17 00		tissa	17 00	17 00	17 00			
		Default Value											
	Sets the value of output voltage at which the module generates warning for under-voltage at voltage is 0.05 to 1.5V.										der-voltage.		
		Format			inear, tv					•			
		Bit Position	15	14	13	12	11	10	9	8			
		Access	r	r	r	r	r	r/w	r/w	r/w			
43	VOUT_UV_WARN_LIMIT	Function		-	Exponer			1	Mantiss	מ		YES	
		Default Value					able						
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			
		Function					tissa						
		Default Value	Default Value Variable										
		Sets the voltage lev range is 0.05 to 2V.	Allowed										
		Format			inear, tv								
		Bit Position	15	14	13	12	11	10	9	8			
		Access	r	r	r	r	r	r/w	r/w	r/w			
44	VOUT_UV_FAULT_LIMIT	Function			Exponer			ſ	Mantiss	ב		YES	
		Default Value	-	1 6			able	1 2	1 1	0			
		Bit Position	7 r/w	6 r/w	5	r/w	3	2 r/w	1 r/w	0			
		Access Function	I/W	I/W	r/w		r/w	I/W	I/W	r/w			
		Default Value					tissa able						
		Delduit value				vuri	able						
		Instructs the modu	le on wl	hat acti					ıtput un	dervolt	age fault		
		Format					d Binar						
		Bit Position	7	6	5	4	3	2	1	0			
45	VOUT_UV_FAULT_RESPONSE	Access	r/w	r/w	r/w	r/w	r/w	r	r	r		YES	
		Function	RSP [1]	RSP [0]	RS[2]	RS[1]	RS[0]	Χ	Х	Х			
		Default Value	1	0	1	1	1	0	0	0	<u> </u>		
		maximum of 140A).		ponent	out overcurrent fault (can only be lowered below the nt is fixed at -2								
		Format			inear, tv								
		Bit Position	15	14	13	12	11	10	9	8			
		Access	r	r	r	r	r	r	r/w	r/w			
46	IOUT_OC_FAULT_LIMIT	Function	-		xponer				Mantiss			YES	
		Default Value	1	1	1	1	0	0	1	0			
		Bit Position	7	6	5	4	3	2	1	0			
		Access	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			
		Function	1	1	1		tissa	1	0	0			
		Default Value	1	1	1	0	0	1	0	0			
		I.											