mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

www.fairchildsemi.com

TL431/TL431A Programmable Shunt Regulator

Features

- Programmable Output Voltage to 36 Volts
- Low Dynamic Output Impedance 0.2Ω Typical
- Sink Current Capability of 1.0 to 100mA
- Equivalent Full-Range Temperature Coefficient of 50ppm/°C Typical
- Temperature Compensated For Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage

FAIRCHILD

SEMICONDUCTOR®

• Fast Turn-on Response

Description

The TL431/TL431A are three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between VREF (approximately 2.5 volts) and 36 volts with two external resistors These devices have a typical dynamic output impedance of 0.2Ω Active output circuitry provides a very sharp turn-on characteristic, making these devices excel lent replacement for zener diodes in many applications.

Internal Block Diagram

Absolute Maximum Ratings

(Operating temperature range applies unless otherwise specified.)

Parameter	Symbol	Value	Unit
Cathode Voltage	Vka	37	V
Cathode Current Range (Continuous)	IKA	-100 ~ +150	mA
Reference Input Current Range	IREF	-0.05 ~ +10	mA
Power Dissipation D, LP Suffix Package P Suffix Package	PD	770 1000	mW mW
Operating Temperature Range	TOPR	-25 ~ +85	٥C
Junction Temperature	ТJ	150	°C
Storage Temperature Range	TSTG	-65 ~ +150	O°

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Cathode Voltage	Vka	VREF	-	36	V
Cathode Current	IKA	1.0	-	100	mA

Electrical Characteristics

 $(T_A = +25^{\circ}C, unless otherwise specified)$

Deremeter	Symbol	I Conditions		TL431		TL431A			Unit	
Farameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Reference Input Voltage	VREF	VKA=VREF, IKA=10mA		2.440	2.495	2.550	2.470	2.495	2.520	V
Deviation of Reference Input Voltage Over- Temperature (Note 1)	ΔVREF/ ΔT	VKA=VREF, IKA=10mA TMIN≤TA≤TMAX		-	4.5	17	-	4.5	17	mV
Ratio of Change in Reference Input Voltage	∆VREF/	IKA	∆VKA=10V- VREF	-	- 1.0	-2.7	-	-1.0	-2.7	mV/V
to the Change in Cathode Voltage	ΔVκα	ΔVKA =10mA	∆VKA=36V- 10V	-	-0.5	-2.0	-	-0.5	-2.0	IIIV/V
Reference Input Current	IREF	IKA=10mA R1=10KΩ	A, ,R2=∞	-	1.5	4	-	1.5	4	μA
Deviation of Reference Input Current Over Full Temperature Range	$\Delta I_{REF} / \Delta T$	IKA=10mA, R1=10KΩ,R2=∞ TA =Full Range		-	0.4	1.2	-	0.4	1.2	μA
Minimum Cathode Cur- rent for Regulation	IKA(MIN)	VKA=VREF		-	0.45	1.0	-	0.45	1.0	mA
Off - Stage Cathode Current	IKA(OFF)	VKA=36V, VREF=0		-	0.05	1.0	-	0.05	1.0	μA
Dynamic Impedance (Note 2)	Ζκα	VKA=VREF, IKA=1 to 100mA f ≥1.0KHz		-	0.15	0.5	-	0.15	0.5	Ω

• T_{MIN}= -25 °C, T_{MAX}= +85 °C

Test Circuits

Figure 1. Test Circuit for VKA=VREF

Figure 3. Test Circuit for IKA(OFF)

Figure 2. Test Circuit for VKA≥VREF

Typical Perfomance Characteristics

Figure 1. Cathode Current vs. Cathode Voltage

Figure 3. Change In Reference Input Voltage vs. Cathode Voltage

Figure 5. Small Signal Voltage Amplification vs. Frequency

Figure 2. Cathode Current vs. Cathode Voltage

Figure 4. Dynamic Impedance Frequency

Figure 6. Pulse Response

Typical Application

Figure 10. Shunt Regulator

Figure 11. Output Control for Three-Termianl Fixed Regulator

Figure 13. Current Limit or Current Source

Figure 14. Constant-Current Sink

Mechanical Dimensions

Package

Mechanical Dimensions (Continued)

Package

8-DIP

Mechanical Dimensions (Continued)

Package

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
TL431ACLP	10/	TO-92	
TL431ACD	Ι /ο	8-SOP	
TL431CLP		TO-92	-25 ~ + 85°C
TL431CP	2%	8-DIP	
TL431CD		8-SOP	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com