

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Precision Switchmode Pulse Width Modulation Control Circuit

The TL594 is a fixed frequency, pulse width modulation control circuit designed primarily for Switchmode power supply control.

Features

- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator with Master or Slave Operation
- On–Chip Error Amplifiers
- On-Chip 5.0 V Reference, 1.5% Accuracy
- Adjustable Deadtime Control
- Uncommitted Output Transistors Rated to 500 mA Source or Sink
- Output Control for Push-Pull or Single-Ended Operation
- Undervoltage Lockout
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	42	V
Collector Output Voltage	V _{C1} , V _{C2}	42	V
Collector Output Current (Each Transistor) (Note 1)	I _{C1} , I _{C2}	500	mA
Amplifier Input Voltage Range	V _{IR}	-0.3 to +42	V
Power Dissipation @ T _A ≤ 45°C	P_{D}	1000	mW
Thermal Resistance Junction-to-Ambient (PDIP) Junction-to-Air (TSSOP) Junction-to-Ambient (SOIC)	$R_{ hetaJA}$	80 140 135	°C/W
Operating Junction Temperature	TJ	125	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C
Operating Ambient Temperature Range TL594CD, CN, CDTB	T _A	-40 to 85	°C
Derating Ambient Temperature	T _A	45	°C

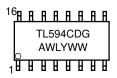
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Maximum thermal limits must be observed.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS



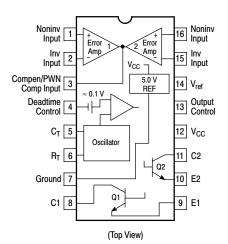
PDIP-16 N SUFFIX CASE 648

SO-16 D SUFFIX CASE 751B

TSSOP-16 DTB SUFFIX CASE 948F

A = Assembly Location

WL, L = Wafer Lot


YY, Y = Year

WW, W = Work Week

G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

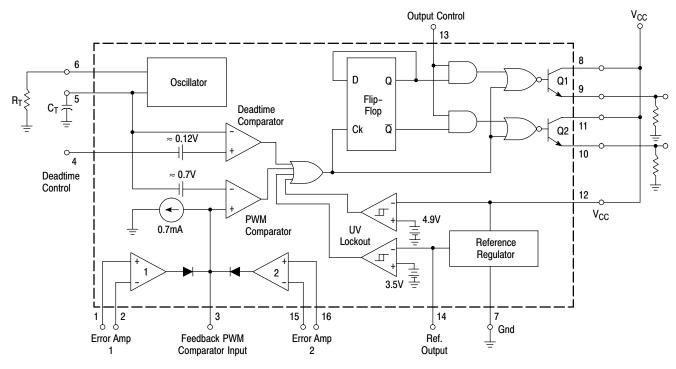
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	V _{CC}	7.0	15	40	V
Collector Output Voltage	V _{C1} , V _{C2}	-	30	40	V
Collector Output Current (Each transistor)	I _{C1} , I _{C2}	-	-	200	mA
Amplified Input Voltage	V _{in}	0.3	-	V _{CC} – 2.0	V
Current Into Feedback Terminal	I _{fb}	-	-	0.3	mA
Reference Output Current	I _{ref}	-	-	10	mA
Timing Resistor	R _T	1.8	30	500	kΩ
Timing Capacitor	C _T	0.0047	0.001	10	μF
Oscillator Frequency	f _{osc}	1.0	40	300	kHz
PWM Input Voltage (Pins 3, 4, 13)	-	0.3	-	5.3	V

 $\begin{tabular}{ll} \textbf{ELECTRICAL CHARACTERISTICS} & (V_{CC} = 15 \ V, \ C_T = 0.01 \ \mu\text{F}, \ R_T = 12 \ k\Omega, \ unless \ otherwise \ noted.) \\ \hline \textbf{For typical values $T_A = 25^{\circ}$C, for min/max values T_A is the operating ambient temperature range that applies, unless otherwise noted.} \\ \hline \end{tabular}$


Characteristics	Symbol	Min	Тур	Max	Unit
REFERENCE SECTION			1	1	1
Reference Voltage $(I_O = 1.0 \text{ mA}, T_A = 25^{\circ}\text{C})$ $(I_O = 1.0 \text{ mA})$	V _{ref}	4.925 4.9	5.0	5.075 5.1	V
Line Regulation (V _{CC} = 7.0 V to 40 V)	Reg _{line}	_	2.0	25	mV
Load Regulation (I _O = 1.0 mA to 10 mA)	Reg _{load}	-	2.0	15	mV
Short Circuit Output Current (V _{ref} = 0 V)	I _{SC}	15	40	75	mA
OUTPUT SECTION					
Collector Off–State Current (V _{CC} = 40 V, V _{CE} = 40 V)	I _{C(off)}	_	2.0	100	μΑ
Emitter Off-State Current (V _{CC} = 40 V, V _C = 40 V, V _E = 0 V)	I _{E(off)}	-	-	-100	μΑ
Collector–Emitter Saturation Voltage (Note 1) Common–Emitter (V _E = 0 V, I _C = 200 mA) Emitter–Follower (V _C = 15 V, I _E = -200 mA)		_ _	1.1 1.5	1.3 2.5	V
Output Control Pin Current Low State ($V_{OC} \le 0.4 \text{ V}$) High State ($V_{OC} = V_{ref}$)	I _{OCL} I _{OCH}	_ _	0.1 2.0	_ 20	μΑ
Output Voltage Rise Time Common–Emitter (See Figure 13) Emitter–Follower (See Figure 14)	t _r	_ _	100 100	200 200	ns
Output Voltage Fall Time Common–Emitter (See Figure 13) Emitter–Follower (See Figure 14)	t _f	_ _	40 40	100 100	ns
ERROR AMPLIFIER SECTION					
Input Offset Voltage (V _{O (Pin 3)} = 2.5 V)	V_{IO}	_	2.0	10	mV
Input Offset Current (V _{O (Pin 3)} = 2.5 V)	I _{IO}	_	5.0	250	nA
Input Bias Current (V _{O (Pin 3)} = 2.5 V)	I _{IB}	_	-0.1	-1.0	μΑ
Input Common Mode Voltage Range (V _{CC} = 40 V, T _A = 25°C)	V _{ICR}	(to V _{CC} -2.	0	V
Inverting Input Voltage Range	V _{IR(INV)}	-().3 to V _{CC} -2	2.0	V
Open Loop Voltage Gain ($\Delta V_O = 3.0 \text{ V}$, $V_O = 0.5 \text{ V}$ to 3.5 V , $R_L = 2.0 \text{ k}\Omega$)	A _{VOL}	70	95	_	dB
Unity–Gain Crossover Frequency (V $_{O}$ = 0.5 V to 3.5 V, R $_{L}$ = 2.0 k Ω)	f _C	-	700	_	kHz
Phase Margin at Unity–Gain ($V_O = 0.5 \text{ V}$ to 3.5 V, $R_L = 2.0 \text{ k}\Omega$)	φm	-	65	_	deg.
Common Mode Rejection Ratio (V _{CC} = 40 V)	CMRR	65	90	-	dB
Power Supply Rejection Ratio (ΔV_{CC} = 33 V, V_{O} = 2.5 V, R_{L} = 2.0 k Ω)	PSRR	_	100	-	dB
Output Sink Current (V _{O (Pin 3)} = 0.7 V)	I _O -	0.3	0.7	-	mA
Output Source Current (V _{O (Pin 3)} = 3.5 V)	I _O +	-2.0	-4.0	-	mA

^{1.} Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, C_T = 0.01 μ F, R_T = 12 $k\Omega$, unless otherwise noted.) For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies, unless otherwise noted.

Characteristics	Symbol	Min	Тур	Max	Unit
PWM COMPARATOR SECTION (Test Circuit Figure 11)					
Input Threshold Voltage (Zero Duty Cycle)	V_{TH}	-	3.6	4.5	V
Input Sink Current (V _{Pin 3} = 0.7 V)	I _I _	0.3	0.7	-	mA
DEADTIME CONTROL SECTION (Test Circuit Figure 11)					
Input Bias Current (Pin 4) (V _{Pin 4} = 0 V to 5.25 V)	I _{IB (DT)}	-	-2.0	-10	μΑ
Maximum Duty Cycle, Each Output, Push–Pull Mode ($V_{Pin~4}=0~V,~C_{T}=0.01~\mu F,~R_{T}=12~k\Omega$) ($V_{Pin~4}=0~V,~C_{T}=0.001~\mu F,~R_{T}=30~k\Omega$)	DC _{max}	45 -	48 45	50 -	%
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle)	V _{TH}	_ 0	2.8	3.3	V
OSCILLATOR SECTION					
Frequency $ \begin{array}{l} (C_T=0.001~\mu\text{F},~R_T=30~k\Omega) \\ (C_T=0.01~\mu\text{F},~R_T=12~k\Omega,~T_A=25^{\circ}\text{C}) \\ (C_T=0.01~\mu\text{F},~R_T=12~k\Omega,~T_A=T_{low}~to~T_{high}) \end{array} $	f _{osc}	9.2 9.0	40 10 -	_ 10.8 12	kHz
Standard Deviation of Frequency* (C _T = 0.001 μ F, R _T = 30 k Ω)	σf _{osc}	-	1.5	-	%
Frequency Change with Voltage (V _{CC} = 7.0 V to 40 V, T _A = 25°C)	$\Delta f_{OSC} (\Delta V)$	-	0.2	1.0	%
Frequency Change with Temperature $(\Delta T_{A}=T_{low} \text{ to } T_{high}, \ C_{T}=0.01 \ \mu\text{F}, \ R_{T}=12 \ k\Omega)$	$\Delta f_{OSC} (\Delta T)$	-	4.0	-	%
UNDERVOLTAGE LOCKOUT SECTION					
Turn–On Threshold (V_{CC} Increasing, I_{ref} = 1.0 mA) T_A = 25°C T_A = T_{low} to T_{high}	V _{th}	4.0 3.5	5.2 -	6.0 6.5	V
Hysteresis TL594C,I TL594M	V _H	100 50	150 150	300 300	mV
TOTAL DEVICE					
Standby Supply Current (Pin 6 at V_{ref} , All other inputs and outputs open) (V_{CC} = 15 V) (V_{CC} = 40 V)	I _{CC}		8.0 8.0	15 18	mA
Average Supply Current (V _{Pin 4} = 2.0 V, C _T = 0.01 μ F, R _T = 12 k Ω , V _{CC} = 15 V, See Figure 11)		-	11	-	mA

*Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, $\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_{in} - \overline{X})^{2}}{\sum_{i=1}^{N} (X_{in} - \overline{X})^{2}}}$

This device contains 46 active transistors.

Figure 1. Representative Block Diagram

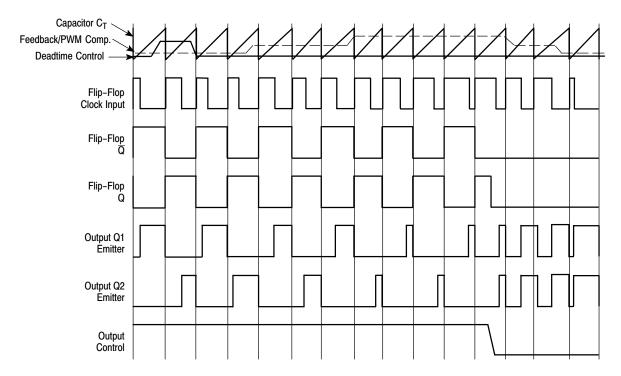
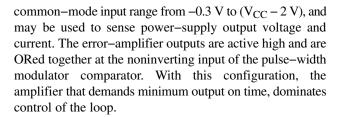


Figure 2. Timing Diagram

APPLICATIONS INFORMATION

Description

The TL594 is a fixed–frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1) An internal–linear sawtooth oscillator is frequency–programmable by two external components, R_T and C_T. The approximate oscillator frequency is determined by:


$$f_{OSC} \approx \frac{1.1}{R_T \bullet C_T}$$

For more information refer to Figure 3.

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C_T to either of two control signals. The NOR gates, which drive output transistors Q1 and Q2, are enabled only when the flip–flop clock–input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control–signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the Timing Diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the deadtime control, the error amplifier inputs, or the feedback input. The deadtime control comparator has an effective 120 mV input offset which limits the minimum output deadtime to approximately the first 4% of the sawtooth–cycle time. This would result in a maximum duty cycle on a given output of 96% with the output control grounded, and 48% with it connected to the reference line. Additional deadtime may be imposed on the output by setting the deadtime–control input to a fixed voltage, ranging between 0 V to 3.3 V.

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on–time, established by the deadtime control input, down to zero, as the voltage at the feedback pin varies from 0.5 V to 3.5 V. Both error amplifiers have a

Functional Table

Input/Output Controls	Output Function	$\frac{f_{\text{out}}}{f_{\text{osc}}} =$
Grounded	Single-ended PWM @ Q1 and Q2	1.0
@ V _{ref}	Push-pull Operation	0.5

When capacitor C_T is discharged, a positive pulse is generated on the output of the deadtime comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flip-flop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on-time of less than 50% is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator.

The TL594 has an internal 5.0 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of $\pm 1.5\%$ with a typical thermal drift of less than 50 mV over an operating temperature range of 0° to 70° C.

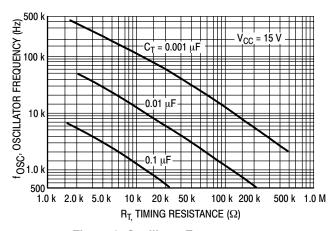


Figure 3. Oscillator Frequency versus Timing Resistance

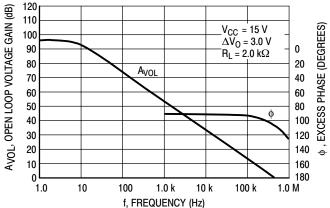


Figure 4. Open Loop Voltage Gain and Phase versus Frequency

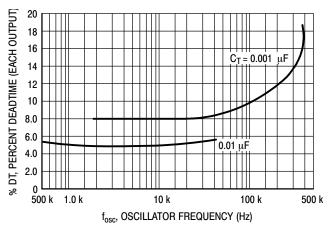


Figure 5. Percent Deadtime versus Oscillator Frequency

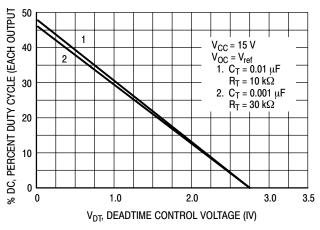


Figure 6. Percent Duty Cycle versus Deadtime Control Voltage

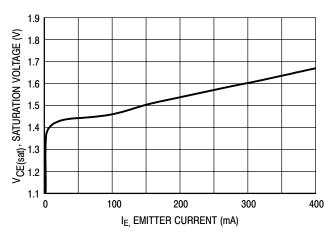


Figure 7. Emitter–Follower Configuration
Output Saturation Voltage versus
Emitter Current

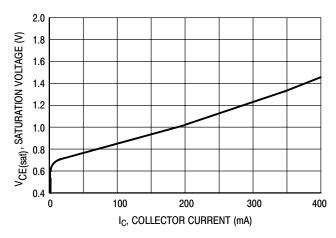


Figure 8. Common–Emitter Configuration
Output Saturation Voltage versus
Collector Current

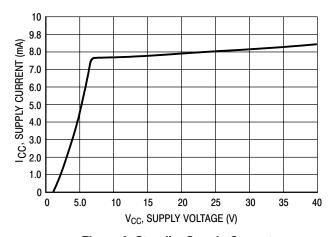


Figure 9. Standby Supply Current versus Supply Voltage

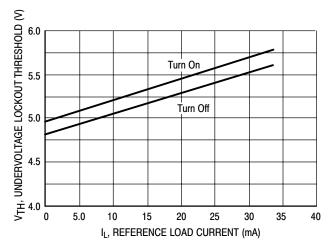


Figure 10. Undervoltage Lockout Thresholds versus Reference Load Current

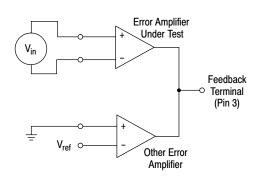


Figure 11. Error-Amplifier Characteristics

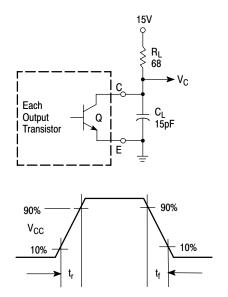


Figure 13. Common–Emitter Configuration
Test Circuit and Waveform

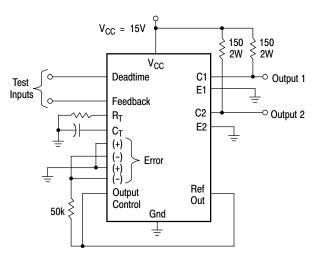


Figure 12. Deadtime and Feedback Control Circuit

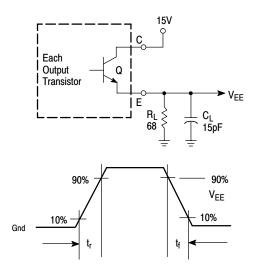


Figure 14. Emitter–Follower Configuration Test Circuit and Waveform

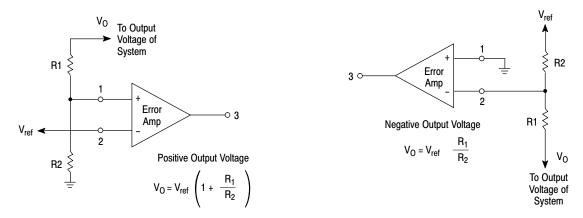


Figure 15. Error-Amplifier Sensing Techniques

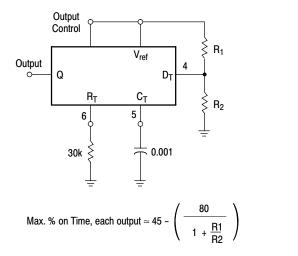


Figure 16. Deadtime Control Circuit

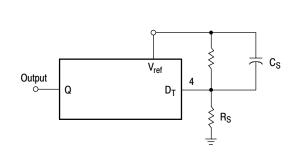


Figure 17. Soft-Start Circuit

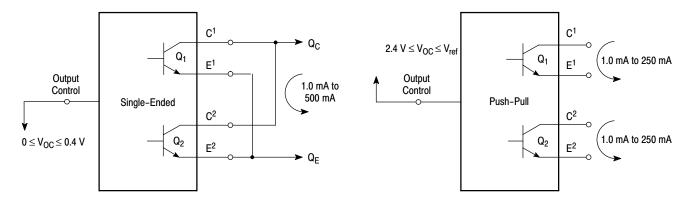


Figure 18. Output Connections for Single-Ended and Push-Pull Configurations



Figure 19. Slaving Two or More Control Circuits

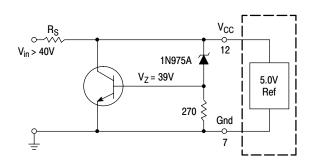


Figure 20. Operation with $V_{in} > 40 \text{ V}$ Using External Zener

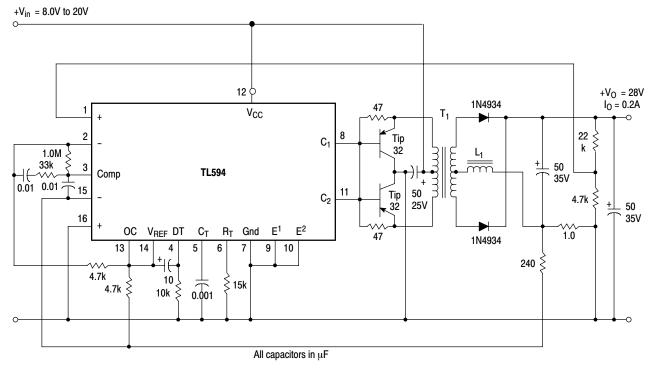


Figure 21. Pulse Width Modulated Push-Pull Converter

Test	Conditions	Results	14 25 mH @ 0 2 A
Line Regulation	V _{in} = 10 V to 40 V	14 mV 0.28%	L1 – 3.5 mH @ 0.3 A T1 – Primary: 20T C.T. #28 AWG
Load Regulation	$V_{in} = 28 \text{ V}, I_O = 1.0 \text{ mA to } 1.0 \text{ A}$	3.0 mV 0.06%	Secondary: 12OT C.T. #36 AWG Core: Ferroxcube 1408P-L00-3CB
Output Ripple	V _{in} = 28 V, I _O = 1.0 A	65 mVpp P.A.R.D.	
Short Circuit Current	V_{in} = 28 V, R_L = 0.1 Ω	1.6 A	
Efficiency	V _{in} = 28 V, I _O = 1.0 A	71%	

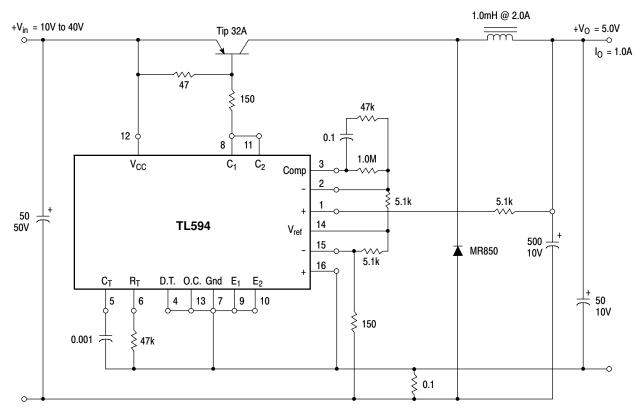
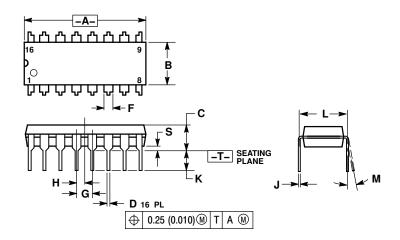


Figure 22. Pulse Width Modulated Step-Down Converter

Test	Conditions	Results
Line Regulation	V _{in} = 8.0 V to 40 V	3.0 mV 0.01%
Load Regulation	$V_{in} = 12.6 \text{ V}, I_O = 0.2 \text{ mA to } 200 \text{ mA}$	5.0 mV 0.02%
Output Ripple	V _{in} = 12.6 V, I _O = 200 mA	40 mVpp P.A.R.D.
Short Circuit Current	V_{in} = 12.6 V, R_L = 0.1 Ω	250 mA
Efficiency	V _{in} = 12.6 V, I _O = 200 mA	72%


ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping [†]
TL594CD	−40 to 85°C	SOIC-16	48 Units/Rail
TL594CDG	-40 to 85°C	SOIC-16 (Pb-Free)	48 Units/Rail
TL594CDR2	−40 to 85°C	SOIC-16	2400 Tape & Reel
TL594CDR2G	-40 to 85°C	SOIC-16 (Pb-Free)	2400 Tape & Reel
TL594CN	−40 to 85°C	PDIP-16	25 Units/Rail
TL594CNG	-40 to 85°C	PDIP-16 (Pb-Free)	25 Units/Rail
TL594CDTBG*	−40 to 85°C	TSSOP-16*	96 Units/Rail
TL594CDTBR2G	−40 to 85°C	TSSOP-16*	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb–Free.

PACKAGE DIMENSIONS

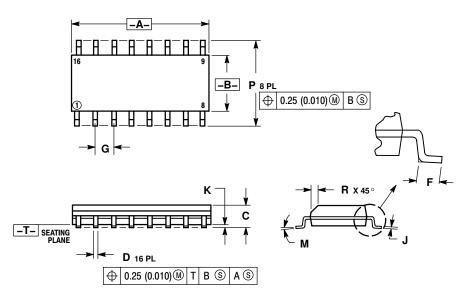
PDIP-16 **N SUFFIX** CASE 648-08 **ISSUE T**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.


 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	0.100 BSC		BSC
Н	0.050 BSC		1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
М	0°	10 °	0 °	10 °
S	0.020	0.040	0.51	1.01

SOIC-16 **D SUFFIX** CASE 751B-05 **ISSUE J**

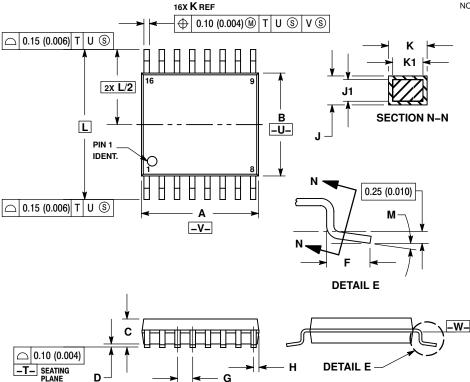
NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.


 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

- 4. MAXIMUM MOLLP PROTROSION 0.15 (0.006)
 PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	1.27 BSC		BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

TSSOP-16 DTB SUFFIX CASE 948F-01 ISSUE A

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE
- 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- 5. DIMENSION K DÓES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
O		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	
М	0°	8°	0 °	8°

ON Semiconductor and we registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.