mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TLC27L1, TLC27L1A, TLC27L1B

CMOS LOW POWER OPERATIONAL AMPLIFIERS

Description

The TLC27L1 operational amplifier combines a wide range of input offset-voltage grades with low offset-voltage drift and high input impedance. The TLC27L1 is a low-bias version of the TLC271 programmable amplifier.

Three offset-voltage grades are available, ranging from the low-cost TLC27L1 (10mV) to the TLC27L1B (2mV) low-offset version. The devices are offered in both commercial and industrial operating temperature ranges.

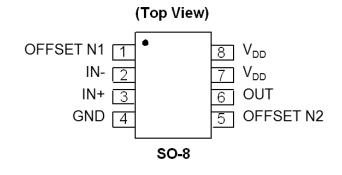
The extremely high input impedance and low bias currents, in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

The devices also exhibit low-voltage single-supply operation, with a common-mode input-voltage range including the negative rail.

Features

 Wide range of supply voltages over specified temperature range:

0°C to +70°C . . . 3 V to 16 V


–40°C to +85°C . . . 4 V to 16 V

- Single-Supply Operation
- Common-Mode Input Voltage Range
 Extends Below the Negative Rail
- Low Noise:

68nV/√Hz typical @ f = 1kHz

- Output Voltage Range Includes Negative Rail
- High Input Impedance
- Designed-In Latch-Up Immunity
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

Applications

The TLC27L1 is the low power version of the TLC271. It offers low power for applications requiring long battery life. For applications that require more performance consider the TLC271.

The TLC27L1 is well suited to many consumer audio, industrial and other low power applications. Consider carefully the bandwidth and slew rate requirements for a specific application.

- Audio Microphone Preamplifier Filtering – Equalizers Signal Amplification
- Industrial
 Power Supply
 Instrumentation
- Metering Medical
- Portable Meters and Measurement Instrumentation

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Ordering Information

	Deekere	Offset	Operating	Pookoging	13" Tape a	ind Reel	
Device	Package Code	Voltage	Temperature Range	Packaging (Note 4)	Quantity	Part Number Suffix	
TLC27L1CS-13	S	10mV	0 to +70°C	SO-8	2500/Tape & Reel	-13	
TLC27L1ACS-13	S	5mV	0 to +70°C	SO-8	2500/Tape & Reel	-13	
TLC27L1BCS-13	S	2mV	0 to +70°C	SO-8	2500/Tape & Reel	-13	
TLC27L1IS-13	S	10mV	-40 to +85°C	SO-8	2500/Tape & Reel	-13	
TLC27L1AIS-13	S	5mV	-40 to +85°C	SO-8	2500/Tape & Reel	-13	
TLC27L1BIS-13	S	2mV	-40 to +85°C	SO-8	2500/Tape & Reel	-13	

Note: 4. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Pin Descriptions

Pin Name	Pin Number	Description
OFFSET N1	1	Offset Control Inverting Input
IN-	2	Inverting Input
IN+	3	Non-Inverting Input
GND	4	Ground
OFFSET N2	5	Offset Control Non-Inverting Input
OUT	6	Output
V _{DD}	7	Supply
V _{DD}	8	Supply

Absolute Maximum Ratings (Notes 5, 6, 7, 8, 9)

Symbol	Р	arameter	Rating	Unit
V _{DD}	Supply Voltage: (Note 6)		18	V
V _{ID}	Differential Input Voltage (Note 7)		±V _{DD}	V
V _{IN}	Input Voltage Range (either input)		-0.3 to V_{DD}	V
I _{IN}	Input Current		±5	mA
lo	Output current		±30	mA
	Output Short-Circuit to GND (Note	8)	Continuous	
PD	Power Dissipation (Note 9)		1065	mW
Ŧ		C Grade	0 to +70	
T _A	Operating Temperature Range	I Grade	-40 to +85	
TJ	Operating Junction Temperature		150	°C
T _{ST}	Storage Temperature Range		-65 to +150	°C
ESD HBM	Human Body Model ESD Protectio	n (1.5kΩ in series with 100pF)	1.5	kV

Notes: 5. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential voltages, are with respect to ground.
 Differential input voltages are at IN+ with respect to IN-.

8. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

9. For operating at high temperatures, the TLC27L1 must be derated 8.5mW/°C to zero based on a +150°C maximum junction temperature and a thermal resistance of +117 °C/W when the device is soldered to a printed circuit board, operating in a still air ambient.

Recommended Operating Conditions

Sympol	Deremete	C g	C grade		l grade		
Symbol	Paramete	Min	Max	Min	Max	_	
V _{DD}	Supply Voltage		3	16	4	16	V
V _{IC}	Common Mode Input Voltage	$V_{DD} = 5V$	-0.2	3.5	-0.2	3.5	V
		$V_{DD} = 10V$	-0.2	8.5	-0.2	8.5	
T _A	Operating Free Air Temperature		0	+70	-40	+85	°C

					TL	.C27L10	, TLC2	7L1AC,	TLC27L	1BC				
	Parameter		Conditions	TA		V _{DD} = 5V	1		$V_{DD} = 10$	V	Unit			
					Min	Тур	Max	Min	Тур.	Max				
				+25°C		1.1	10	_	1.1	10				
	,		$V_{\rm O} = 1.4 V$	0 to +70°C			12	_		12				
V			Input Offset Voltage TLC27		$V_{IC} = 0V$	+25 [°] C		0.9	5	—	0.9	5	mV	
V _{IO}	Input Offset Voltage	TLU27LTAU		$R_{\rm S} = 50\Omega$	0 to +70°C			6.5	—		6.5	mv		
		TLC27L1BC	$R_L = 1M\Omega$	+25 [°] C	—	0.24	2	—	0.26	2				
		TLG2/LTBG		0 to +70°C	—		3	—	—	3				
α_{VIO}	Average Temperature Input Offset Voltage	e Coefficient of		+25 to +70°C		1.1			1		μV/°C			
	Inner the Office the Comment	(Nets 10)	$V_{O} = V_{DD}/2,$	+25 [°] C	_	0.1	60	—	0.1	60				
I _{IO}	Input Offset Current	(Note TU)	$V_{IC} = V_{DD}/2$	+70 [°] C	_	7	300	—	8	300	рА			
	Innut Ding Comment (N		$V_{\rm O} = V_{\rm DD}/2,$	+25 [°] C		0.6	60	_	0.7	60				
I _{IB}	Input Bias Current (N	lote 10)	$V_{IC} = V_{DD}/2$	+70 [°] C		40	600	_	50	600	рА			
	Common Mode Input Voltage (Note 11)						+25 [°] C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2	_	V
V _{ICR}) —	0°C to +70°C	-0.2 to 3.5			-0.2 to 8.5			V			
		V 400		+25 [°] C	3.2	4.1	_	8	8.9					
V _{OH}	High Level Output Voltage		$V_{ID} = 100 \text{mV},$	0°C	3	4.1		7.8	8.9		V			
			$R_L = 1M\Omega$	+70 [°] C	3	4.2		7.8	8.9					
			V 100m)/	+25 [°] C		0	50	—	0	50				
V_{OL}	Low Level Output Vol	tage	$V_{ID} = -100 \text{mV},$ $I_{OL} = 0$	0°C	—	0	50	—	0	50	mV			
			$I_{OL} = 0$	+70 [°] C	—	0	50	—	0	50				
			D = 1MO	+25 [°] C	50	520		50	870					
A_{VD}	Large Signal Differen	tial Voltage Gain	R _L = 1MΩ (Note 12)	0°C	50	700		50	1030		V/mV			
				+70 [°] C	50	380		50	660					
				+25°C	65	94		65	97					
CMRR	Common Mode Rejec	ction Ratio	$V_{IC} = V_{ICRmin}$	0°C	60	95		60	97		dB			
				+70 [°] C	60	95		60	97					
	Supply Voltage Reject	tion Patic	$V_{DD} = 5V$ to	+25 [°] C	70	97		70	97					
k _{SVR}	$(\Delta V_{DD}/\Delta V_{IO})$		10V	0°C	60	97		60	97		dB			
			V ₀ = 1.4V	+70 [°] C	60	98		60	98					
			$V_{O} = V_{DD}/2,$	+25 [°] C		10	17	—	14	23				
I _{DD}	Supply Current		$V_{IC} = V_{DD}/2,$	0°C		12	21	—	18	33	μΑ			
			No Load	+70°C	—	8	14	—	11	20				

Notes: 10. The typical values of input bias current and input offset current below 5pA were calculated.

11. This range also applies to each input individually.

12. At $V_{DD} = 5V$, $V_O = 0.25V$ to 2V; at $V_{DD} = 10V$, $V_O = 1V$ to 6V.

					1	LC27L1	I, TLC2	7L1AI, 1	LC27L1	BI	
	Parameter		Conditions	T₄	,	V _{DD} = 5V	1		V _{DD} = 10	V	Unit
					Min	Тур	Max	Min	Тур.	Max	
		TI 007141		+25°C	_	1.1	10		1.1	10	
			V _O = 1.4V	-40° to 85°C	_	_	13	_	_	13	
V			$V_{IC} = 0V$	+25°C	_	0.9	5	_	0.9	5	mV
V _{IO}	Input Offset Voltage	TLC27L1AI	R _s = 50Ω	-40° to +85°C	_		7	_	_	7	mv
			$R_L = 1M\Omega$	+25°C		0.24	2		0.26	2	
		TLC27L1BI		-40° to +85°C	—	—	3.5		—	3.5	
α _{VIO}	Average Temperature Input Offset Voltage	Coefficient of	_	+25°C to +85°C		1.1			1		μV/°C
			$V_{\rm O} = V_{\rm DD}/2$	+25°C	_	0.1	60	_	0.1	60	
I _{IO}	Input Offset Current (N	Note 13)	$V_{IC} = V_{DD}/2$	+85°C	_	24	1000	_	26	1000	pА
	Level Dies Ownerst (Ne	4- 10)	$V_{\rm O} = V_{\rm DD}/2$	+25°C		0.6	60		0.7	60	
I _{IB}	Input Bias Current (No	ite 13)	$V_{IC} = V_{DD}/2$	+85°C	_	200	2000	—	220	2000	рА
	Common Mode Input V	/oltage (Note		+25°C	-0.2 to 4	-0.3 to 4.2	_	-0.2 to 9	-0.3 to 9.2	—	V
V _{ICR}	14)		—	-40° to +85°C	-0.2 to 3.5	—		-0.2 to 8.5	_	_	V
				+25°C	3	4.1		8	8.9		V
V _{OH}	High Level Output Volt	age	$V_{ID} = 100 \text{mV}, \text{R}_{L} =$	-40°C	3	4.1		7.8	8.9		
			1ΜΩ	+85°C	3	4.2	_	7.8	8.9	_	
				+25°C		0	50		0	50	
V _{OL}	Low Level Output Volta	age	$V_{ID} = -100 \text{mV},$	-40°C	_	0	50	_	0	50	mV
			I _{OL} = 0	+85°C	_	0	50		0	50	
		- 1) / - 14	R _L = 1MΩ	+25°C	50	520		50	870		
A _{VD}	Large Signal Differentia	al voltage	(Note 15)	-40°C	50	900		50	1550		V/mV
	Gain		(10010-15)	+85°C	50	330		50	585		
				+25°C	65	94		65	97		
CMRR	Common Mode Rejecti	on Ratio	$V_{\text{IC}} = V_{\text{ICRmin}}$	-40°C	60	95		60	97		dB
				+85°C	60	95	_	60	98		
	Supply Voltage Boiget	on Patia	$V_{DD} = 5V$ to 10V	+25°C	70	97	_	70	97	_	
k _{SVR}	Supply Voltage Rejecti $(\Delta V_{DD}/\Delta V_{IO})$	UII Maliu	$V_{DD} = 5V 10 10V$ $V_{O} = 1.4V$	-40°C	60	97		60	97		dB
			•0 - ••	+85°C	60	98	_	60	98		
			$V_{O} = V_{DD}/2$	+25°C	—	10	17		14	23	
I _{DD}	Supply Current		$V_{IC} = V_{DD}/2$	-40°C	—	16	27	—	25	43	μA
			No load	+85°C		17	13		10	18	

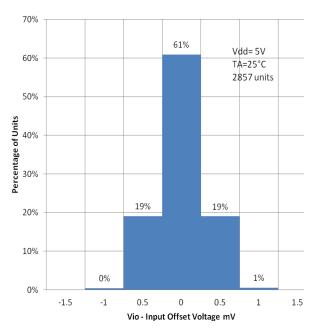
Notes: 13. The typical values of input bias current and input offset current below 5pA were calculated.

14. This range also applies to each input individually.

15. At V_{DD} = 5V, V_O = 0.25V to 2V; at V_{DD} = 10V, V_O = 1V to 6V.

$V_{DD} = 5$	5V							
	Parameter	C	onditions	TA	TLC2	7L1C, TLC27 TLC27L1BC		Unit
					Min	Тур	Max	_
				+25°C		0.03	_	
		$R_L = 1M\Omega$	$V_{I(PP)} = 1V$	0°C		0.04	_	
0.0		C∟ = 20pF See		+70°C	_	0.03	_	
SR	Slew Rate at Unity Gain			+25°C	_	0.03	_	V/µs
		Figure 31	$V_{I(PP)} = 2.5V$	0°C	_	0.03	_	
				+70°C		0.02	_	
Vn	Equivalent Input Noise Voltage	$F = 1$ kHz, $R_s = 20\Omega$ See Figure 32		+25°C	_	68	_	nV/√Hz
				+25°C		5	_	
Вом	Maximum Output Swing		= 20pF, R _L = 1MΩ	0°C	_	6	_	kHz
	Bandwidth	See Figure 3	1	+70°C	_	4.5	_	
				+25°C		85		
B ₁	Unity Gain Bandwidth	$V_1 = 10mV, C$	-	0°C		100		MHz
	,	See Figure 3	3	+70°C		65		
				+25°C		34°		-
фm	Phase Margin		$= B_1, V_1 = 10mV, C_L = 20pF$			36°		
T		See Figure 33		0°C +70°C		30°		_
V _{DD} = 10)V	1						
					TLC2	7L1C, TLC27	L1AC,	
	Parameter	Conditions		T₄	TLC27L1BC			Unit
					Min	Тур	Max	_
				+25°C	_	0.05	_	
		R _L = 1MΩ,	$V_{I(PP)} = 1V$	<u>~~</u>	_	0.05		_
	SB Slew Bate at Unity Gain $C_L = 20pF$	· · · · · · · · · · · · · · · · · · ·	,	0°C		0.05		
		$C_L = 20 pF$		0°C +70°C		0.03		-
SR	Slew Rate at Unity Gain	C∟ = 20pF See						V/μs
58	Slew Rate at Unity Gain	-	V _{I(PP)} = 5.5V	+70°C		0.04		V/μs
58	Slew Rate at Unity Gain	See	V _{I(PP)} = 5.5V	+70°C +25°C		0.04 0.04		V/μs
Vn	Slew Rate at Unity Gain	See Figure 31 F = 1kHz, R _s	= 20Ω	+70°C +25°C 0°C		0.04 0.04 0.05		− V/μs nV/√Hz
	Equivalent Input Noise Voltage	See Figure 31 F = 1kHz, R _S See Figure 3	= 20Ω 2	+70°C +25°C 0°C +70°C +25°C		0.04 0.04 0.05 0.04 68		-
Vn	Equivalent Input Noise Voltage Maximum Output Swing	See Figure 31 $F = 1kHz, R_S$ See Figure 32 $V_0 = V_{OH}, C_L$	= 20Ω 2 = 20pF, R _L = 1MΩ	+70°C +25°C 0°C +70°C +25°C +25°C		0.04 0.04 0.05 0.04 68 1		nV/√Hz
	Equivalent Input Noise Voltage	See Figure 31 F = 1kHz, R _S See Figure 3	= 20Ω 2 = 20pF, R _L = 1MΩ	+70°C +25°C 0°C +70°C +25°C +25°C +25°C 0°C		0.04 0.04 0.05 0.04 68 1 1.3		-
Vn	Equivalent Input Noise Voltage Maximum Output Swing	See Figure 31 $F = 1kHz, R_S$ See Figure 3 $V_0 = V_{OH}, C_L$ See Figure 3	= 20Ω 2 = 20pF, R _L = 1MΩ 1	+70°C +25°C 0°C +70°C +25°C +25°C 0°C +70°C		0.04 0.04 0.05 0.04 68 1		nV/√Hz
V _n B _{OM}	Equivalent Input Noise Voltage Maximum Output Swing Bandwidth	See Figure 31 $F = 1 \text{ kHz}, R_S$ See Figure 3 $V_0 = V_{OH}, C_L$ See Figure 3 $V_1 = 10 \text{mV}, C$	= 20Ω 2 = 20pF, R _L = 1MΩ 1 L = 20pF	+70°C +25°C 0°C +70°C +25°C +25°C 0°C +70°C +25°C		0.04 0.04 0.05 0.04 68 1 1.3 0.9 110		nV/√Hz kHz
Vn	Equivalent Input Noise Voltage Maximum Output Swing	See Figure 31 $F = 1kHz, R_S$ See Figure 3 $V_0 = V_{OH}, C_L$ See Figure 3	= 20Ω 2 = 20pF, R _L = 1MΩ 1 L = 20pF	+70°C +25°C 0°C +70°C +25°C +25°C 0°C +70°C +25°C 0°C +25°C 0°C		0.04 0.04 0.05 0.04 68 1 1.3 0.9 110 125		nV/√Hz
V _n B _{OM}	Equivalent Input Noise Voltage Maximum Output Swing Bandwidth	See Figure 31 $F = 1 \text{ kHz}, R_S$ See Figure 3 $V_0 = V_{OH}, C_L$ See Figure 3 $V_1 = 10 \text{mV}, C$	= 20Ω 2 = 20pF, R _L = 1MΩ 1 L = 20pF	+70°C +25°C 0°C +70°C +25°C +25°C 0°C +70°C +25°C 0°C +25°C 0°C +70°C		0.04 0.04 0.05 0.04 68 1 1.3 0.9 110 125 90		nV/√Hz kHz
V _n B _{OM}	Equivalent Input Noise Voltage Maximum Output Swing Bandwidth	See Figure 31 $F = 1 \text{ kHz}, R_S$ See Figure 3 $V_0 = V_{OH}, C_L$ See Figure 3 $V_1 = 10 \text{mV}, C$ See Figure 3	= 20Ω 2 = 20pF, R _L = 1MΩ 1 L = 20pF 3 0mV, C _L = 20pF	+70°C +25°C 0°C +70°C +25°C +25°C 0°C +70°C +25°C 0°C +25°C 0°C		0.04 0.04 0.05 0.04 68 1 1.3 0.9 110 125		nV/√Hz kHz

	Parameter		Conditions	T _A	TLC2	7L1I, TLC27 TLC27L1BI		Unit
					Min	Тур	Max	_
				+25°C	_	0.03		
		R _L = 1MΩ	$V_{I(PP)} = 1V$	-40°	—	0.04		
		$C_L = 20 pF$		+85°C	—	0.03	—	-
SR	Slew Rate at Unity Gain	See		+25°C	—	0.03		V/µs
		Figure 31	$V_{I(PP)} = 2.5V$	-40°	_	0.04		
				+85°C	—	0.02		
Vn	Equivalent Input Noise Voltage	F = 1kHz, R _s = 20Ω See Figure 32		+25°C	_	68	_	nV/√Hz
	Mariana Ortent Orten		00-E D 4140	+25°C	—	5	—	
B _{OM}	Maximum Output Swing Bandwidth	$V_0 = V_{OH}, C_L = 20 \text{pF}, R_L = 1 \text{M}\Omega$		-40°	—	7	—	kHz
	Bandwidth	See Figure 3 ⁻		+85°C	—	4	—	
		10	00. F	+25°C	—	85		
B ₁	B₁ Unity Gain Bandwidth	$V_1 = 10mV, C_L = 20pF$		-40°	—	130		MHz
		See Figure 33)	+85°C	—	55	—	
	φ _m Phase Margin			+25°C	—	34°		
фm		$F = B_1, V_1 = 10$ Figure 33	$OmV, C_L = 20pF$ See	-40°	—	38°	_	_
				+85°C	_	28°	—	
$V_{DD} = 10$	OV	-						
					TLC27L1I, TLC27L1AI,			Unit
	Parameter	Conditions		TA	TLC27L1BI			
			conditions	T₄		ILC2/LIBI	Max	
			conditions	T _A	Min	Тур		—
				T ₄ +25°C	Min —		_	
		R _L = 1MΩ	V _{I(PP)} = 1V			Тур	—	
SB	Slew Bate at Unity Gain			+25°C	_	Тур 0.05	—	
SR	Slew Rate at Unity Gain	R _L = 1MΩ		+25°C -40°	_	Typ 0.05 0.06		 - V/μs
SR	Slew Rate at Unity Gain	R _L = 1MΩ C _L = 20pF		+25°C -40° +85°C		Typ 0.05 0.06 0.03	—	 - V/μs
SR	Slew Rate at Unity Gain	$R_L = 1M\Omega$ $C_L = 20pF$ See	V _{I(PP)} = 1V	+25°C -40° +85°C +25°C		Typ 0.05 0.06 0.03 0.04	—	 V/μs
SR Vn	Slew Rate at Unity Gain	$R_L = 1M\Omega$ $C_L = 20pF$ See	$V_{I(PP)} = 1V$ $V_{I(PP)} = 5.5V$ $= 20\Omega$	+25°C -40° +85°C +25°C -40°		Typ 0.05 0.06 0.03 0.04 0.05		 V/μs nV/√Hz
	Equivalent Input Noise Voltage	$R_L = 1M\Omega$ $C_L = 20pF$ See Figure 31 $F = 1kHz, R_S$ See Figure 32	$V_{I(PP)} = 1V$ $V_{I(PP)} = 5.5V$ $= 20\Omega$	+25°C -40° +85°C +25°C -40° +85°C		Typ 0.05 0.06 0.03 0.04 0.05 0.03		
	Equivalent Input Noise Voltage Maximum Output Swing	$R_{L} = 1M\Omega$ $C_{L} = 20pF$ See Figure 31 $F = 1kHz, R_{S}$ See Figure 32 $V_{O} = V_{OH}, C_{L} = 1$	$V_{I(PP)} = 1V$ $V_{I(PP)} = 5.5V$ = 20Ω = 20ΩF, R _L = 1MΩ	+25°C -40° +85°C +25°C -40° +85°C +25°C		Typ 0.05 0.06 0.03 0.04 0.05 0.03		
Vn	Equivalent Input Noise Voltage	$R_L = 1M\Omega$ $C_L = 20pF$ See Figure 31 $F = 1kHz, R_S$ See Figure 32	$V_{I(PP)} = 1V$ $V_{I(PP)} = 5.5V$ = 20Ω = 20ΩF, R _L = 1MΩ	+25°C -40° +85°C +25°C -40° +85°C +25°C +25°C		Typ 0.05 0.06 0.03 0.04 0.05 0.03 68 1		nV/√Hz
Vn	Equivalent Input Noise Voltage Maximum Output Swing	$R_{L} = 1M\Omega$ $C_{L} = 20pF$ See Figure 31 $F = 1kHz, R_{S}$ See Figure 32 $V_{O} = V_{OH}, C_{L} =$ See Figure 3	$V_{I(PP)} = 1V$ $V_{I(PP)} = 5.5V$ $= 20\Omega$ $= 200F, R_{L} = 1M\Omega$	+25°C -40° +85°C +25°C -40° +85°C +25°C +25°C +25°C -40°		Typ 0.05 0.06 0.03 0.04 0.05 0.03 68 1 1.4		nV/√Hz
Vn	Equivalent Input Noise Voltage Maximum Output Swing	$R_{L} = 1M\Omega$ $C_{L} = 20pF$ See Figure 31 $F = 1kHz, R_{S}$ See Figure 32 $V_{O} = V_{OH}, C_{L} =$ See Figure 33 $V_{I} = 10mV, C_{I}$	$V_{I(PP)} = 1V$ $V_{I(PP)} = 5.5V$ $= 20\Omega$ $= 20\rho F, R_{L} = 1M\Omega$ $= 20\rho F$	+25°C -40° +85°C +25°C -40° +85°C +25°C +25°C +25°C +25°C -40° +85°C		Typ 0.05 0.06 0.03 0.04 0.05 0.03 68 1 1.4 0.8		nV/√Hz
V _n B _{OM}	Equivalent Input Noise Voltage Maximum Output Swing Bandwidth	$R_{L} = 1M\Omega$ $C_{L} = 20pF$ See Figure 31 $F = 1kHz, R_{S}$ See Figure 32 $V_{O} = V_{OH}, C_{L} =$ See Figure 3	$V_{I(PP)} = 1V$ $V_{I(PP)} = 5.5V$ $= 20\Omega$ $= 20\rho F, R_{L} = 1M\Omega$ $= 20\rho F$	+25°C -40° +85°C +25°C +85°C +25°C +25°C +25°C -40° +85°C +85°C +25°C		Typ 0.05 0.06 0.03 0.04 0.05 0.03 68 1 1.4 0.8 110		nV/√Hz kHz
V _n B _{OM}	Equivalent Input Noise Voltage Maximum Output Swing Bandwidth	$R_{L} = 1M\Omega$ $C_{L} = 20pF$ See Figure 31 $F = 1kHz, R_{S}$ See Figure 32 $V_{O} = V_{OH}, C_{L} =$ See Figure 33 $V_{I} = 10mV, C_{I}$ See Figure 33	$V_{I(PP)} = 1V$ $V_{I(PP)} = 5.5V$ $= 20\Omega$ $= 20pF, R_{L} = 1M\Omega$ $= 20pF$	+25°C -40° +85°C +25°C -40° +85°C +25°C +25°C -40° +85°C +85°C +25°C +25°C		Typ 0.05 0.06 0.03 0.04 0.05 0.03 68 1 1.4 0.8 110 155		nV/√Hz kHz
V _n B _{OM}	Equivalent Input Noise Voltage Maximum Output Swing Bandwidth	$R_{L} = 1M\Omega$ $C_{L} = 20pF$ See Figure 31 $F = 1kHz, R_{S}$ See Figure 32 $V_{O} = V_{OH}, C_{L} =$ See Figure 33 $V_{I} = 10mV, C_{I}$ See Figure 33	$V_{I(PP)} = 1V$ $V_{I(PP)} = 5.5V$ $= 20\Omega$ $= 20\rho F, R_{L} = 1M\Omega$ $= 20\rho F$	+25°C -40° +85°C +25°C +85°C +25°C +25°C +25°C +25°C +85°C +25°C +25°C +25°C +25°C +25°C		Typ 0.05 0.06 0.03 0.04 0.05 0.03 68 1 1.4 0.8 110 155 80		nV/√Hz kHz



TLC27L1, TLC27L1A, TLC27L1B

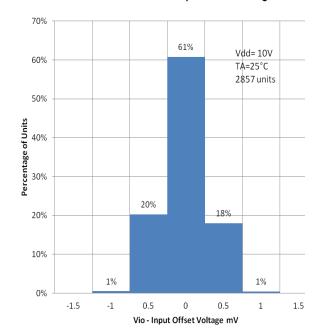

Typical Performance Characteristics Table Index of Graphs

			Figure
V _{IO}	Input Offset Voltage	Distribution	1,2
		vs. High Level Output Current	3,4
V _{OH}	High Level Output Voltage	vs. Supply Voltage	5
		vs. Free Air Temperature	6
		vs. Common Mode Input Voltage	7,8
V _{OL}	Low Level Output Voltage	vs. Differential Input Voltage	9
VOL	Low Level Output Voltage	vs. Free Air Temperature	10
		vs. Low Level Output Current	11,12
•	Large Signal Differential Voltage	vs. Supply Voltage	13
A _{VD}	Gain	vs. Free Air Temperature	14
I _{IB}	Input Bias Current	vs. Free Air Temperature	15
I _{IO}	Input Offset Current	vs. Free Air Temperature	15
V _{IC}	Common Mode Input Voltage	vs. Supply Voltage	16
	Supply Current	vs. Supply Voltage	17
I _{DD}	Supply Current	vs. Free Air Temperature	18
SR	Slew Rate	vs. Supply Voltage	19
Sh	Siew hale	vs. Free Air Temperature	20
I _{SEL}	Bias Select Current	vs. Supply Voltage	21
V _{O(OPP)}	Maximum Peak to Peak Output Voltage	vs. Frequency	22
B ₁	Unity Gain Bandwidth	vs. Free Air Temperature	23
D ₁	Unity Gain Bandwidth	vs. Supply Voltage	24
A _{VD}	Large Signal Differential Voltage Gain	vs. Frequency	29,30
		vs. Supply Voltage	25
φ _m	Phase Margin	vs. Free Air Temperature	26
		vs. Capacitive Load	27
Vn	Equivalent Input Noise Voltage	vs. Frequency	28
∲ shift	Phase Shift	vs. Frequency	29,30

Distribution of TLC27L1 Input Offset Voltage

Distribution of TLC27L1 Input Offset Voltage

Figure 2

18

1б

14

V_{0H}-High-Level Output Voltage-V

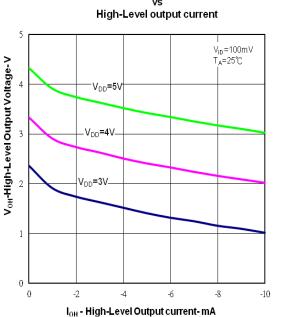
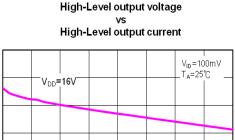
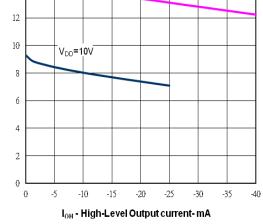




Figure 3

High-Level output voltage vs

Figure 1

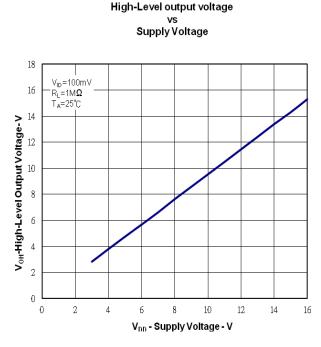


Figure 5

Low-level output voltage

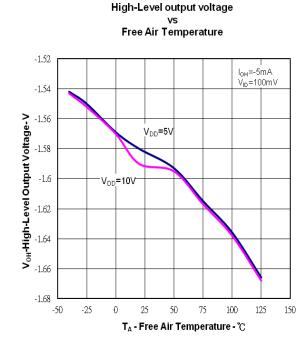
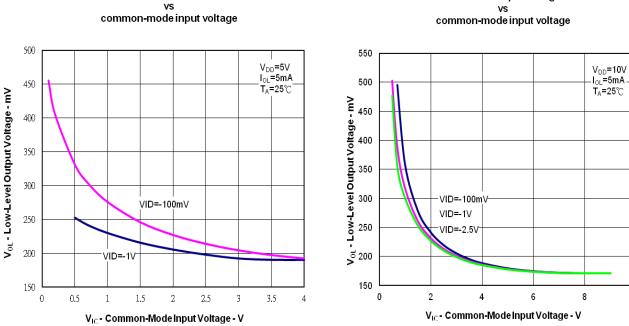
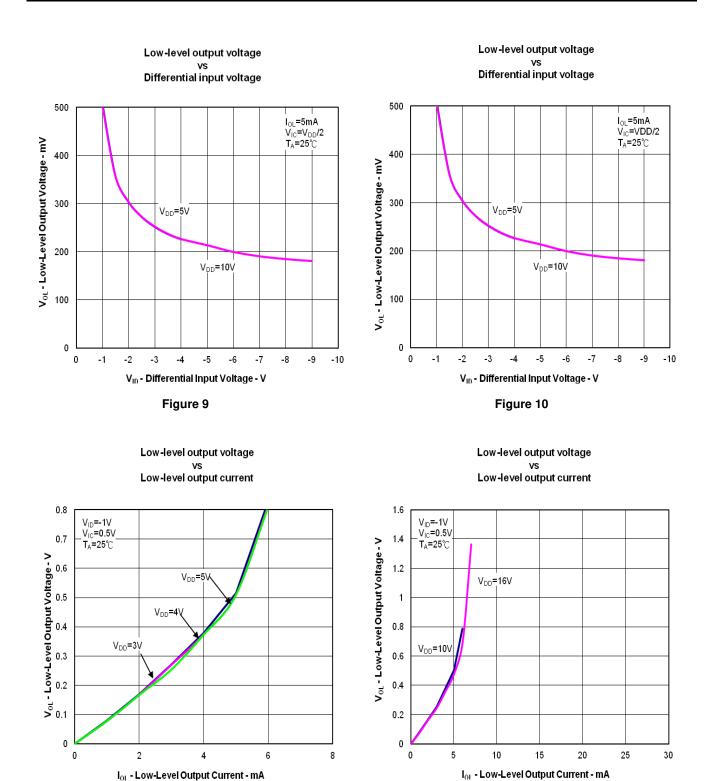


Figure 6




Figure 7

Low-level output voltage vs common-mode input voltage

10

-

Figure 11

Figure 12

Large-Signal Differential Voltage Amplification

Typical Performance Characteristics

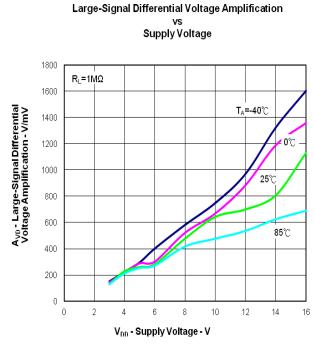
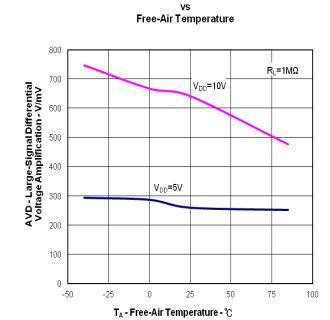
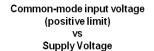



Figure 13



lιn

105

125

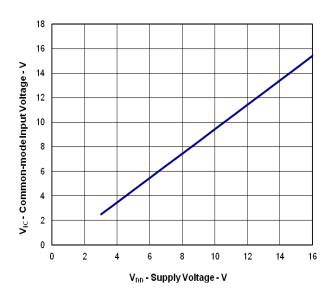


Figure 16

65

Figure 15

 T_{A} - Free-Air Temperature - $^{\circ}\!\mathrm{C}$

85

45

 \mathbf{I}_{B} and \mathbf{I}_{I0} - Input Bias and Input Offset Current - pA

1000

900

800

700

600

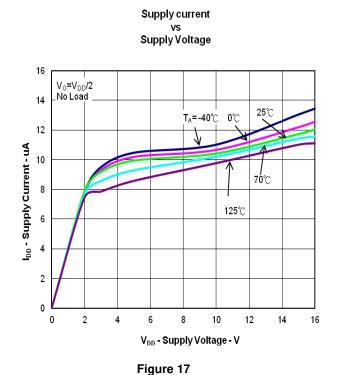
500

400

300

200

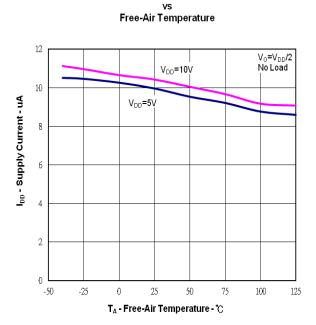
100


0

25

V_{DD}=10V

V_{IC}=5V



Slew Rate

vs

Supply Voltage

Supply current

Figure 18

Slew rate vs Free-Air Temperature

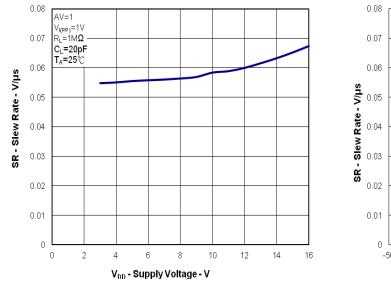
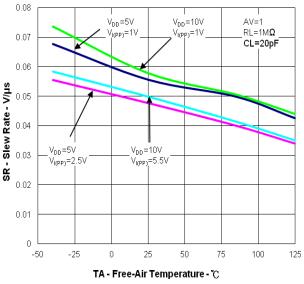
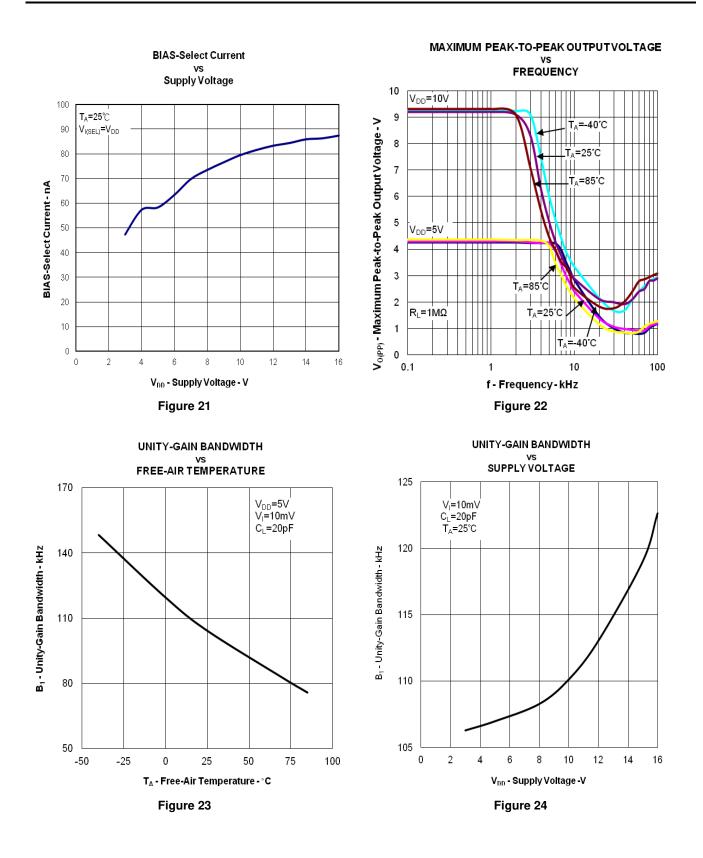
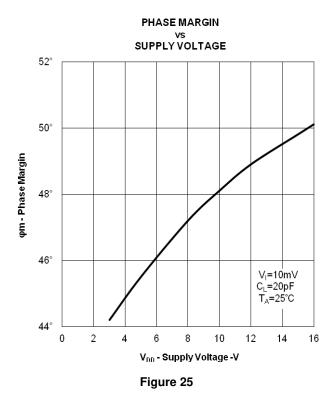
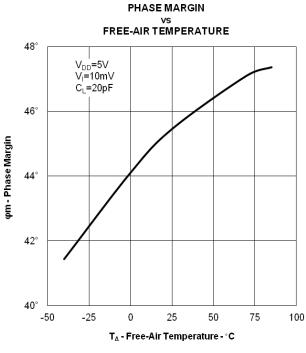
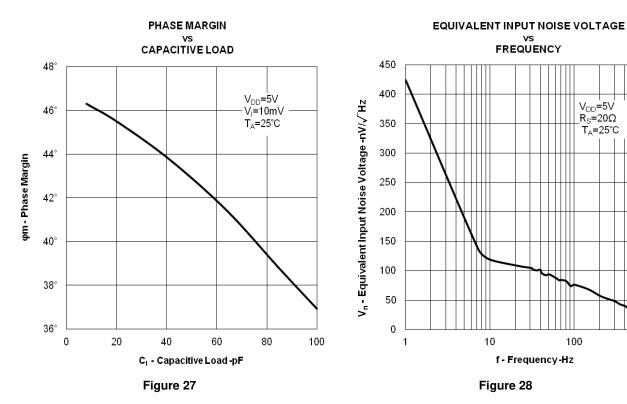
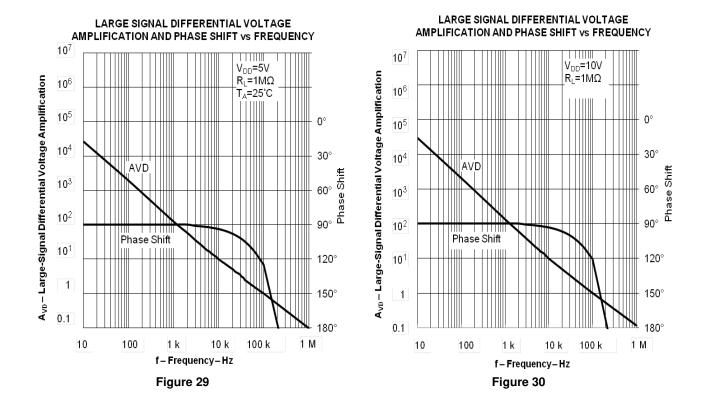


Figure 19


Figure 20

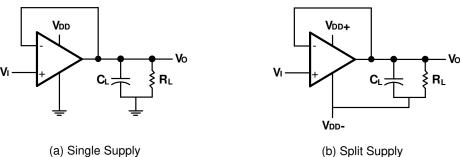




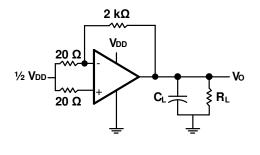
TLC27L1, TLC27L1A, TLC27L1B

Document number: DS35398 Rev. 2 - 2

1000



Application Information


Parameter measurement circuits

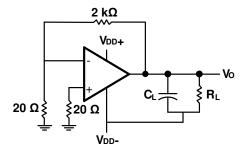

Because the TLC271 is optimized for single-supply operation, circuit configurations used for the various tests can present some difficulties since the input signal must be offset from ground. This issue can be avoided by testing the device with split supplies and the output load tied to the negative rail. Example circuits are shown below.

Figure 31 Measurement circuit with either single or split supply

(a) Single Supply

(b) Split Supply

Fig 32 Noise measurement with single or split supply

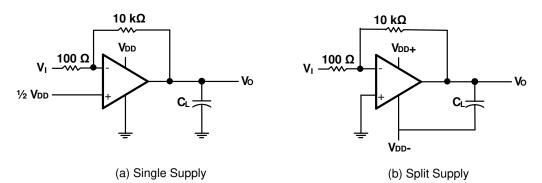


Figure 33 Gain of 100 with single or split supply

Application Notes

Offset Voltage Nulling Circuit

The TLC27L1 offers external input offset null control. Nulling of the input off set voltage may be achieved by adjusting a $100-k\Omega$ potentiometer connected between the offset null terminals with the wiper connected as shown in Figure 31.

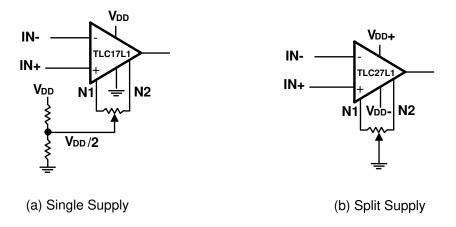


Figure 31 Offset Nulling Circuits

Input Bias Current – Error Protection

The TLC27L1 has an extremely high input impedance. To use the inputs as a high impedance node, for example, greater than100K, or to accurately measure bias current, it is necessary to place a guard ring around the input pins and drive the ring to a potential equivalent to the common mode input voltage. In many cases this common mode potential may exist as a part of the feedback circuit and can be obtained from one of the appropriate nodes. In the case for the SO8 package, pin 4 is connected to ground or Vdd-. Input pins 2 and 3 are normally well above the voltage on pin 4, so a large potential voltage on the order of several volts is likely between pins 3 and 4. To prevent interference with a 1 pA bias current, the board resistance will need to be in the order of gigaohms to have a minimum impact. The goal is to have the common mode potential on the guard ring, therefore reducing the stray voltage near the input pins to millivolts in normal applications. Any solder flux residue, excess moisture, humidity or board contamination will be detrimental to using the device in a high impedance input mode.

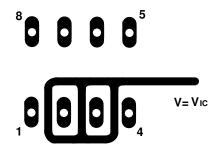


Figure 32 Bias Current Guarding for High Input Impedance Applications

Typical Application Circuits

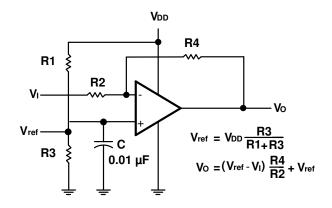
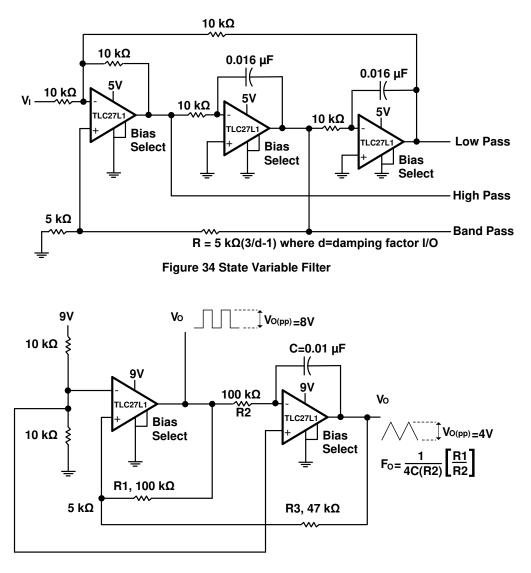



Figure 33 Inverting Amplifier With Voltage Reference

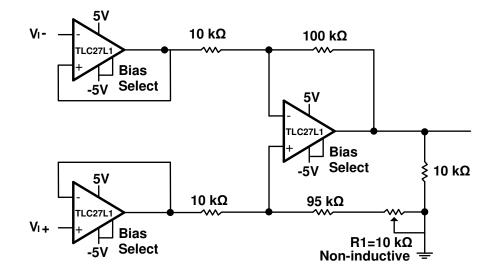


Figure 36 Low Power Instrumentation Amplifier

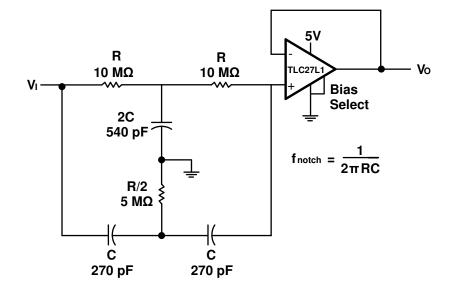


Figure 37 Single Supply Twin-T Notch Filter

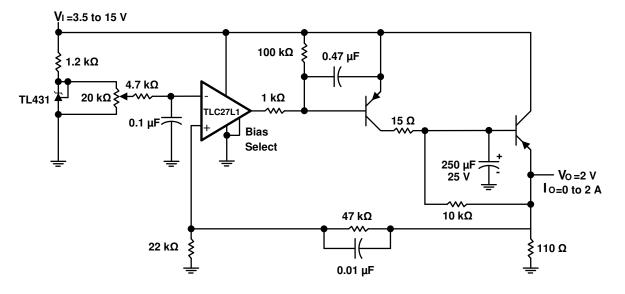


Figure 38 Power Supply

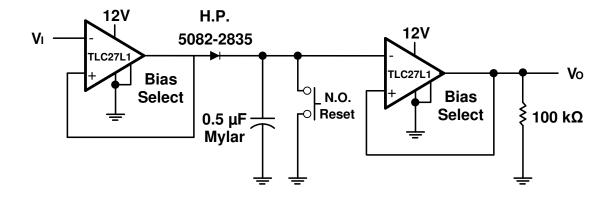


Figure 39 Positive Peak Detector

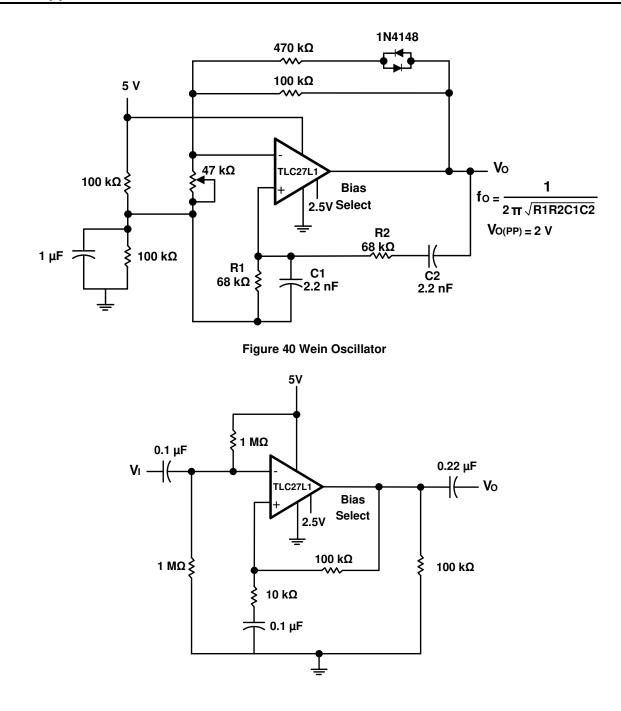


Figure 41 Single-Supply AC Amplifier

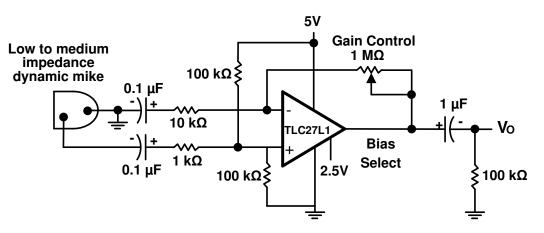
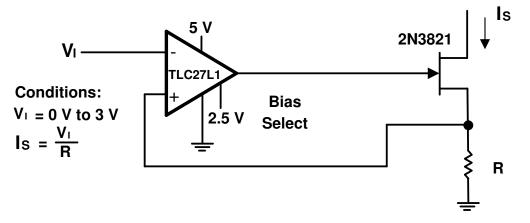
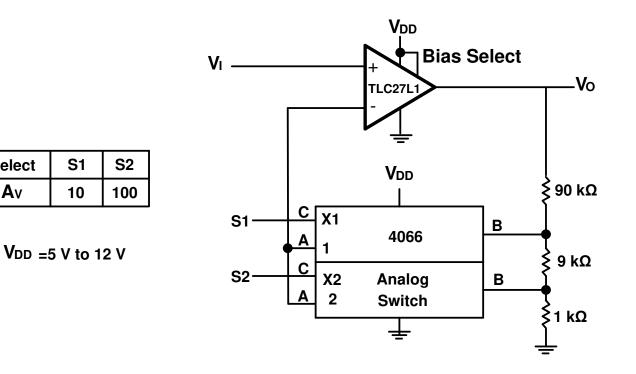
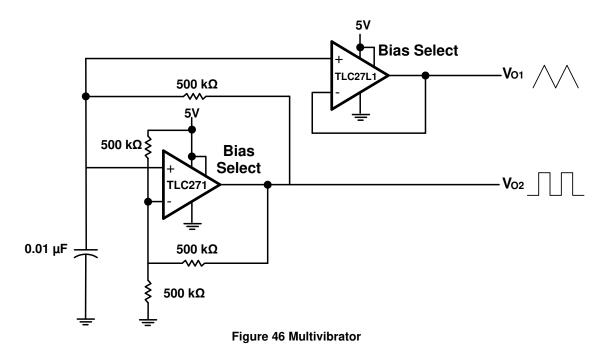


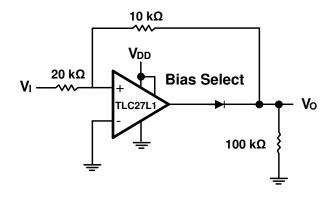
Figure 43 Photo-Diode Amplifier With Ambient Light Rejection

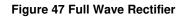


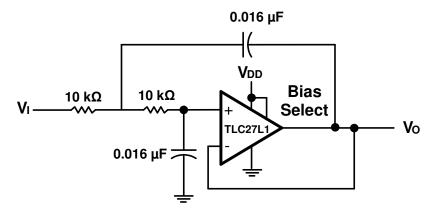

Figure 44 Precision Low-Current Sink


Select

Av


Typical Application Circuits (cont.)




Figure 45 Amplifier With Digital Gain Selection

Nomalized to Fc = 1 kHz and R $_{\rm L}$ = 10 k Ω

Figure 48 Two-Pole Low-Pass Butterworth Filter