

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

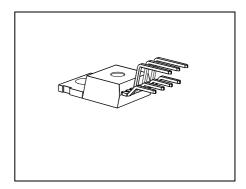
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

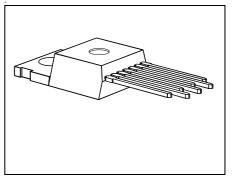
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

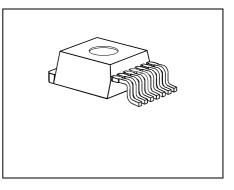
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

5-V Low Drop Fixed Voltage Regulator

TLE 4271-2


Features


- Output voltage tolerance ≤ ±2%
- Low-drop voltage
- Integrated overtemperature protection
- Reverse polarity protection
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (≤ 400 ms)
- Short-circuit proof
- Suitable for use in automotive electronics
- Wide temperature range
- Adjustable reset and watchdog time
- Green Product (RoHS compliant)
- AEC Qualified


Functional Description

The TLE 4271-2 is functional and electrical identical to TLE 4271.

The device is a 5-V low drop fixed voltage regulator. The maximum input voltage is 42 V (65 V, \leq 400 ms). Up to an input voltage of 26 V and for an output current up to 550 mA it regulates the output voltage within a 2% accuracy. The short circuit protection limits the output current of more than 650 mA. The IC can be switched off via the inhibit input. An integrated watchdog monitors the connected controller. The device incorporates overvoltage protection and temperature protection that disables the circuit at overtemperature.

Туре	Package
TLE 4271-2	PG-TO220-7-11
TLE 4271-2 S	PG-TO220-7-12
TLE 4271-2 G	PG-TO263-7-1

Data Sheet 1 Rev. 2.7, 2007-06-25

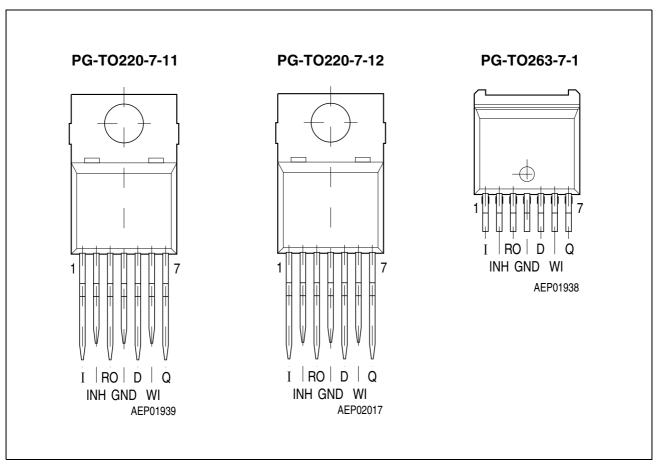


Figure 1 Pin Configuration (top view)

Table 1 Pin Definitions and Functions

Pin	Symbol	Function
1	I	Input; block to ground directly on the IC with ceramic capacitor.
2	INH	Inhibit
3	RO	Reset Output ; the open collector output is connected to the 5 V output via an integrated resistor of 30 k Ω .
4	GND	Ground
5	D	Reset Delay; connect a capacitor to ground for delay time adjustment.
6	WI	Watchdog Input
7	Q	5-V Output; block to ground with 22 μF capacitor, ESR < 3 Ω .

Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of a series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element.

The reset output RO is in high-state if the voltage on the delay capacitor $C_{\rm D}$ is greater or equal $V_{\rm UD}$. The delay capacitor $C_{\rm D}$ is charged with the current $I_{\rm D}$ for output voltages greater than the reset threshold $V_{\rm RT}$. If the output voltage gets lower than $V_{\rm RT}$ ('reset condition') a fast discharge of the delay capacitor $C_{\rm D}$ sets in and as soon as $V_{\rm D}$ gets lower than $V_{\rm LD}$ the reset output RO is set to low-level.

The time for the delay capacitor charge from $V_{\rm UD}$ to $V_{\rm LD}$ is the reset delay time $t_{\rm D}$.

When the voltage on the delay capacitor has reached $V_{\rm UD}$ and reset was set to high, the watchdog circuit is enabled and discharges $C_{\rm D}$ with the constant current $I_{\rm DWD}$. If there is no rising edge observed at the watchdog input, $C_{\rm D}$ will be discharge down to $V_{\rm LDW}$, then reset output RO will be set to low and $C_{\rm D}$ will be charged again with the current $I_{\rm DWC}$ until $V_{\rm D}$ reaches $V_{\rm UD}$ and reset will be set high again.

If the watchdog pulse (rising edge at watchdog input WI) occurs during the discharge period $C_{\rm D}$ is charged again and the reset output stays high. After $V_{\rm D}$ has reached $V_{\rm UD}$, the periodical behavior starts again.

Internal protection circuits protect the IC against:

- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

Data Sheet 3 Rev. 2.7, 2007-06-25

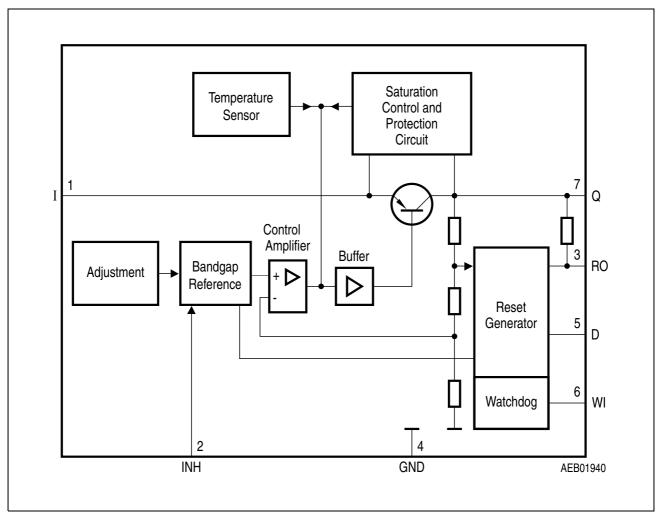


Figure 2 Block Diagram

Data Sheet 4 Rev. 2.7, 2007-06-25

Table 2 Absolute Maximum Ratings

 $T_{\rm j}$ = -40 to 150 °C

Parameter	Symbol	Lin	nit Values	Unit	Notes	
		Min.	Max.			
Input						
Voltage	V_{I}	-42	42	V	_	
Voltage	V_1	_	65	V	<i>t</i> ≤ 400 ms	
Current	I_{I}	_	_	mA	internally limited	
Inhibit						
Voltage	V_{INH}	-42	42	V	_	
Voltage	V_{INH}	_	65	V	<i>t</i> ≤ 400 ms	
Current	I_{INH}	_	_	mA	internally limited	
Reset Output						
Voltage	V_{RO}	-0.3	42	V	_	
Current	I_{RO}	_	-	mA	internally limited	
Reset Delay	•	•				
Voltage	V_{D}	-0.3	7	V	_	
Current	I_{D}	-5	5	mA	-	
Watchdog						
Voltage	V_{W}	-0.3	7	V	_	
Current	I_{W}	-5	5	mA	_	
Output						
Voltage	V_{Q}	-1.0	16	V	_	
Current	I_{Q}	-5	_	mA	internally limited	
Ground						
Current	I_{GND}	-0.5	_	Α	_	
Temperatures	•	•	-		•	
Junction temperature	T_{i}	_	150	°C	_	
Storage temperature	T_{stg}	-50	150	°C	_	

Table 3 Operating Range

Parameter	Symbol	Symbol Limit Value		Unit	Notes
		Min.	Max.		
Input voltage	V_{I}	6	40	V	_
Junction temperature	T_{j}	-40	150	°C	_
Thermal Resistance				1	
Junction ambient	R_{thja}		65 70	K/W K/W	_ PG-TO263-7-1
Junction case	$R_{ m thjc} \ Z_{ m thjc}$		3 2	K/W K/W	- t < 1 ms

Table 4 Characteristics

 $V_{\rm I}$ = 13.5 V; -40 °C ≤ $T_{\rm j}$ ≤ 125 °C; $V_{\rm INH}$ > $V_{\rm U,INH}$ (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
		Min.	Тур.	Max.		
Output voltage	V_{Q}	4.90	5.00	5.10	V	5 mA $\leq I_{Q} \leq$ 550 mA; 6 V $\leq V_{I} \leq$ 26 V
Output voltage	V_{Q}	4.90	5.00	5.10	V	$ \begin{array}{l} 26~\mathrm{V} \leq V_{\mathrm{I}} \leq 36~\mathrm{V}; \\ I_{\mathrm{Q}} \leq 300~\mathrm{mA} \end{array} $
Output current limiting	I_{Qmax}	650	800	_	mA	$V_{\rm Q}$ = 0 V
Current consumption $I_q = I_l$	I_{q}	_	_	6	μА	$V_{INH} = 0 \; V; I_{Q} = 0 \; mA$
Current consumption $I_q = I_l$	I_{q}	_	800	_	μΑ	V_{INH} = 5 V; I_{Q} = 0 mA
Current consumption $I_q = I_l - I_Q$	I_{q}	_	1	1.5	mA	$I_{\rm Q}$ = 5 mA
Current consumption $I_q = I_l - I_Q$	I_{q}	_	55	75	mA	$I_{\rm Q}$ = 550 mA
Current consumption $I_q = I_l - I_Q$	I_{q}	_	70	90	mA	$I_{\rm Q}$ = 550 mA; $V_{\rm I}$ = 5 V
Drop voltage	V_{dr}	_	350	700	mV	$I_{\rm Q}$ = 550 mA ¹⁾
Load regulation	ΔV_{Q}	_	25	50	mV	$I_{\rm Q}$ = 5 to 550 mA; $V_{\rm I}$ = 6 V
Supply voltage regulation	ΔV_{Q}	_	12	25	mV	$V_{\rm I}$ = 6 to 26 V $I_{\rm Q}$ = 5 mA
Power supply Ripple rejection	PSRR	_	54	_	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 Vpp

Table 4 Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; -40 °C ≤ $T_{\rm j}$ ≤ 125 °C; $V_{\rm INH}$ > $V_{\rm U,INH}$ (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
		Min.	Тур.	Max.		
Reset Generator	<u> </u>	1	.	1		,
Switching threshold	V_{RT}	4.5	4.65	4.8	V	_
Reset high voltage	V_{ROH}	4.5	_	_	V	_
Saturation voltage	$V_{RO,SAT}$	_	60	_	mV	$R_{\text{intern}} = 30 \text{ k}\Omega;$ 1.0 V $\leq V_{\text{Q}} \leq 4.5 \text{ V}$
Saturation voltage	$V_{RO,SAT}$	_	200	400	mV	$I_{\rm R}$ = 3 mA ²⁾ ; $V_{\rm Q}$ = 4.4 V
Reset pull-up	R	18	30	46	kΩ	internally connected to Q
Lower reset timing threshold	V_{LD}	0.2	0.45	0.8	V	$V_{\rm Q} < V_{\rm RT}$
Charge current	I_{D}	8	14	25	μA	$V_{\rm D}$ = 1.0 V
Upper timing threshold	V_{UD}	1.4	1.8	2.3	V	_
Delay time	t_{D}	8	13	18	ms	$C_{\rm D}$ = 100 nF
Reset reaction time	t_{RR}	_	_	3	μs	$C_{\rm D}$ = 100 nF
Overvoltage Protec	tion	•		·		
Turn-off voltage	$V_{I,ov}$	40	44	46	V	_
Inhibit						
Turn-on voltage	$V_{U,INH}$	1.0	2.0	3.5	٧	$V_{\rm Q}$ = high (> 4.5 V)
Turn-off voltage	$V_{L,INH}$	0.8	1.3	3.3	V	$V_{\rm Q} = {\rm low} \; (< 0.8 \; {\rm V})$
Inhibit current	I_{INH}	8	12	25	μA	V_{INH} = 5 V
Watchdog				·		
Upper watchdog switching threshold	V_{UDW}	1.4	1.8	2.3	V	_
Lower watchdog switching threshold	V_{LDW}	0.2	0.45	0.8	V	_
Discharge current	I_{DWD}	1.5	2.7	3.5	μΑ	$V_{\rm D}$ = 1 V
Charge current	I_{DWC}	8	14	25	μΑ	$V_{\rm D}$ = 1 V
Watchdog period	$t_{\mathrm{WD,P}}$	40	55	80	ms	$C_{\rm D}$ = 100 nF

Table 4 Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; -40 °C ≤ $T_{\rm j}$ ≤ 125 °C; $V_{\rm INH}$ > $V_{\rm U,INH}$ (unless otherwise specified)

•	J		O,			•
Parameter	Symbol	Limit Values			Unit	Test Condition
		Min.	Тур.	Max.		
Watchdog trigger time	t _{WI,tr}	30	45	66	ms	$C_{\rm D}$ = 100 nF see diagram
Watchdog pulse slew rate	V_{WI}	5	_	_	V/µs	from 20% to 80% $V_{\rm Q}$

¹⁾ Drop voltage = $V_{\rm l}$ - $V_{\rm Q}$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input)

Data Sheet 9 Rev. 2.7, 2007-06-25

²⁾ Test condition not applicable during delay time for power-on reset.

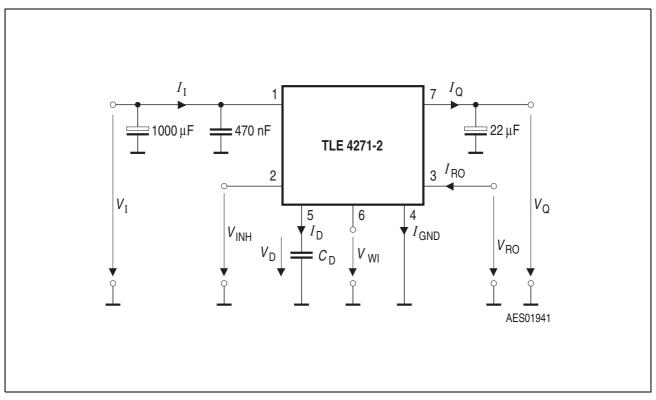


Figure 3 Test Circuit

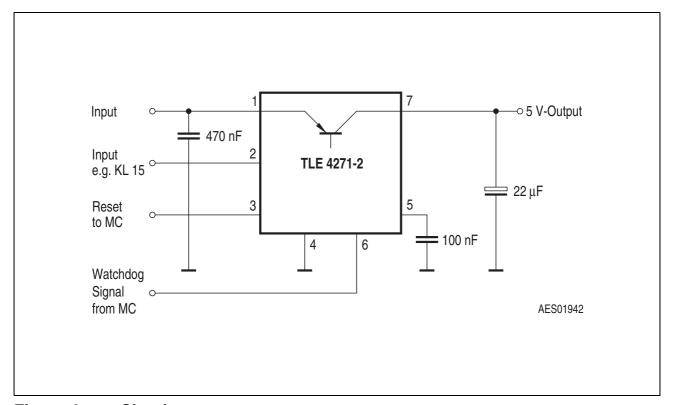


Figure 4 Circuit

Application Description

The IC regulates an input voltage in the range of 6 V < $V_{\rm I}$ < 40 V to $V_{\rm Qnom}$ = 5.0 V. Up to 26 V it produces a regulated output current of more than 550 mA. Above 26 V the save-operating-area protection allows operation up to 36 V with a regulated output current of more than 300 mA. Overvoltage protection limits operation at 42 V. The overvoltage protection hysteresis restores operation if the input voltage has dropped below 36 V. The IC can be switched off via the inhibit input, which causes the quiescent current to drop below 10 μ A. A reset signal is generated for an output voltage of $V_{\rm Q}$ < 4.5 V. The watchdog circuit monitors a connected controller. If there is no positive-going edge at the watchdog input within a fixed time, the reset output is set to low. The delay for power-on reset and the maximum permitted watchdog-pulse period can be set externally with a capacitor.

Design Notes for External Components

An input capacitor $C_{\rm l}$ is necessary for compensation of line influences. The resonant circuit consisting of lead inductance and input capacitance can be damped by a resistor of approx. 1 Ω in series with $C_{\rm l}$. An output capacitor $C_{\rm Q}$ is necessary for the stability of the regulating circuit. Stability is guaranteed at values of $C_{\rm Q} \ge$ 22 μF and an ESR of < 3 Ω .

Reset Circuitry

If the output voltage decreases below 4.5 V, an external capacitor $C_{\rm D}$ on pin D will be discharged by the reset generator. If the voltage on this capacitor drops below $V_{\rm DRL}$, a reset signal is generated on pin RO, i.e. reset output is set low. If the output voltage rises above the reset threshold, $C_{\rm D}$ will be charged with constant current. After the power-on-reset time the voltage on the capacitor reaches $V_{\rm DU}$ and the reset output will be set high again. The value of the power-on-reset time can be set within a wide range depending of the capacitance of $C_{\rm D}$.

Reset Timing

The power-on reset delay time is defined by the charging time of an external capacitor C_d which can be calculated as follows:

$$t_{\rm D} = C_{\rm D} \times \Delta V / I_{\rm D} \tag{1}$$

Definitions:

- C_D = delay capacitor
- t_D = reset delay time
- I_D = charge current, typical 14 μA
- $\Delta V = V_{\text{UD}}$, typical 1.8 V
- $V_{\rm UD}$ = upper delay timing threshold at $C_{\rm D}$ for reset delay time

Data Sheet 11 Rev. 2.7, 2007-06-25

The reset reaction time $t_{\rm rr}$ is the time it takes the voltage regulator to set the reset out LOW after the output voltage has dropped below the reset threshold. It is typically 1 μ s for delay capacitor of 47 nF. For other values for $C_{\rm d}$ the reaction time can be estimated using the following equation:

$$t_{\rm BB} \approx 20 \text{ s/F} \times C_{\rm d}$$
 (2)

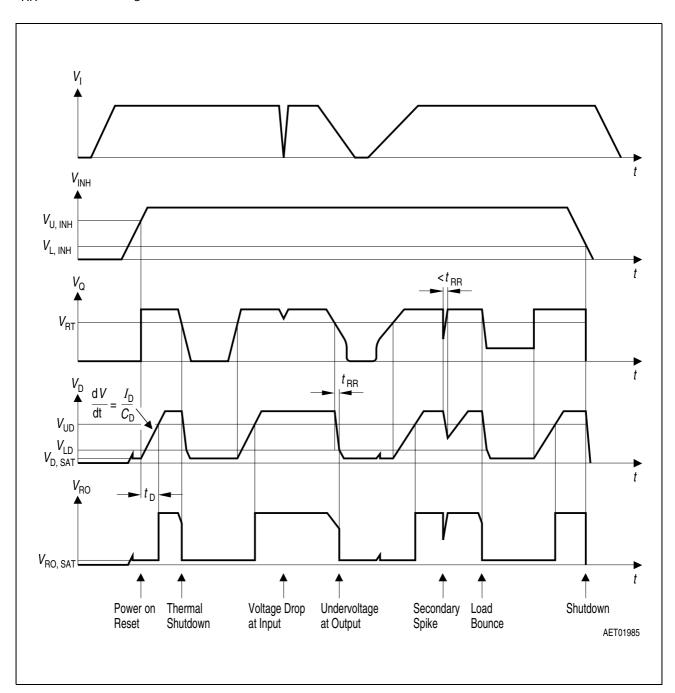


Figure 5 Time Response

Watchdog Timing

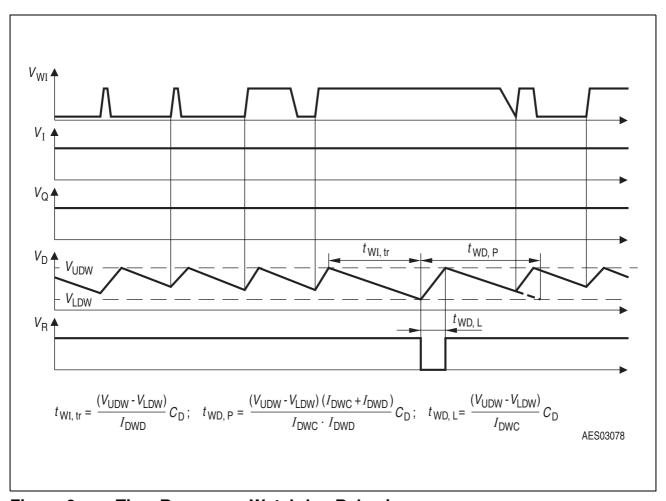
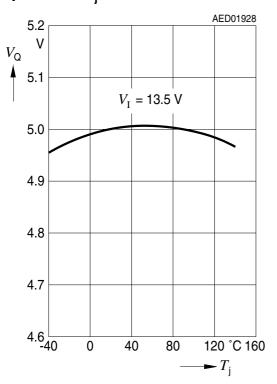
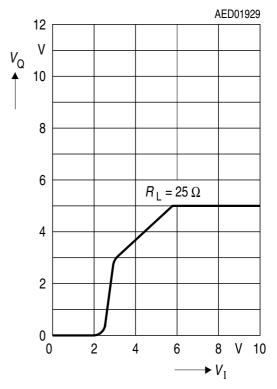
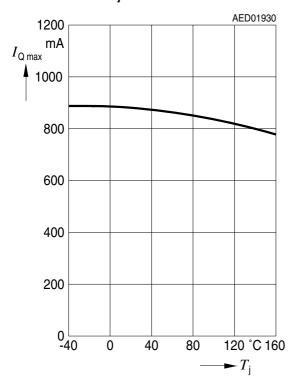



Figure 6 Time Response, Watchdog Behavior

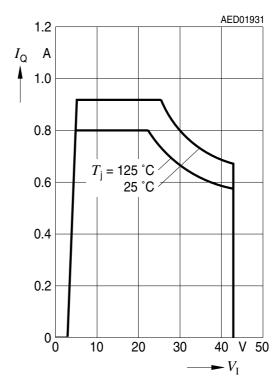


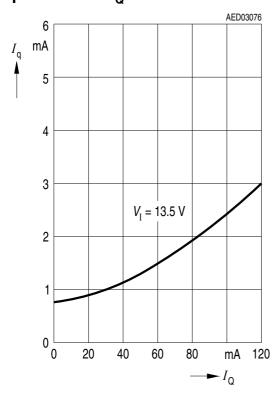
Typical Performance Characteristics

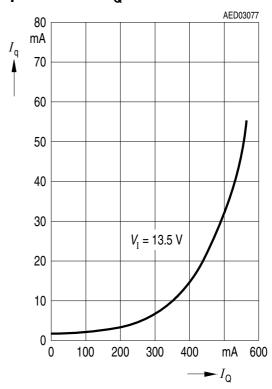
Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm j}$



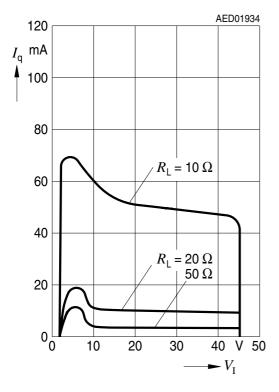
Output Voltage $V_{\rm Q}$ versus Input Voltage $V_{\rm I}$ ($V_{\rm INH}$ = $V_{\rm I}$)



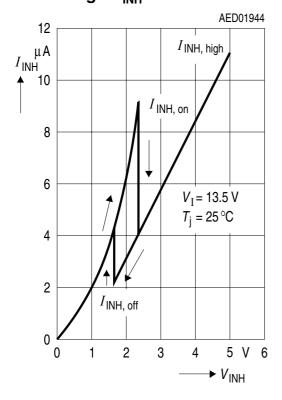

Output Current Limit $I_{\rm Q}$ versus Temperature $T_{\rm i}$


Output Current I_{Q} versus Input Voltage V_{I}

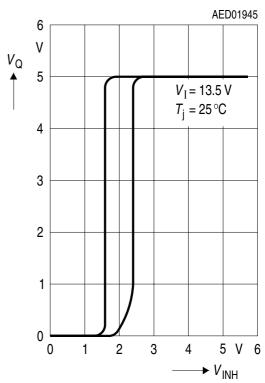
Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$



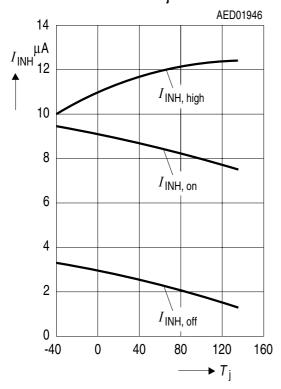
Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$



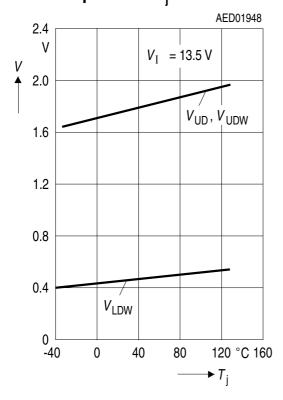
Current Consumption $I_{\rm q}$ versus Input Voltage $V_{\rm l}$

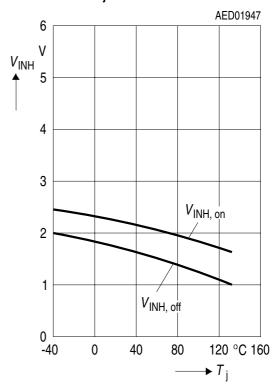

Inhibit Current I_{INH} versus Inhibit Voltage V_{INH}

Drop Voltage V_{dr} versus Output Current I_{Q}

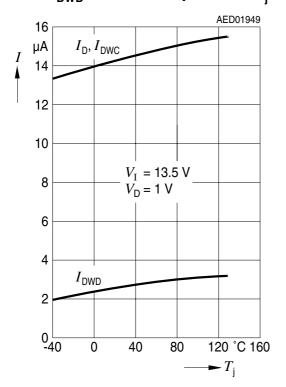


Output Voltage V_{Q} versus Inhibit Voltage V_{INH}

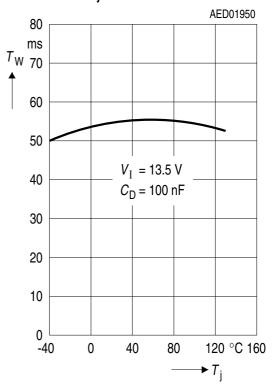



Inhibit Current Consumptions I_{INH} versus Temperature T_{i}

Switching Voltage $V_{\rm UD}$ and $V_{\rm LDW}$ versus Temperature $T_{\rm j}$



Inhibit Voltages V_{INH} versus Temperature T_{i}



Charge Current $I_{\rm D}, I_{\rm DWC}$ and Discharge Current $I_{\rm DWD}$ versus Temperature $T_{\rm j}$

Watchdog Pulse Time $T_{\rm w}$ versus Temperature $T_{\rm i}$

Package Outlines

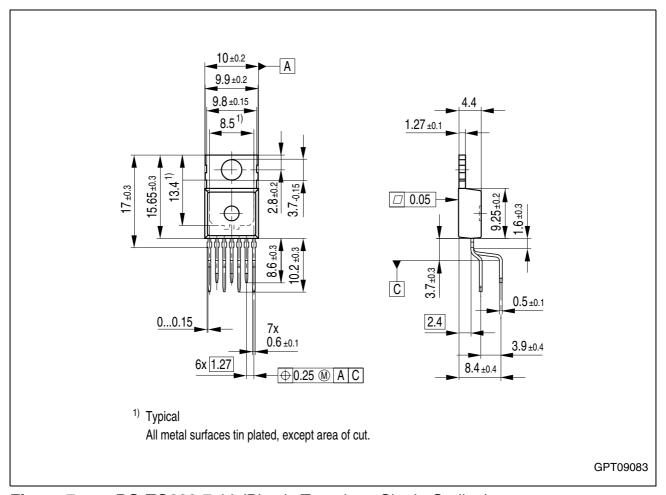
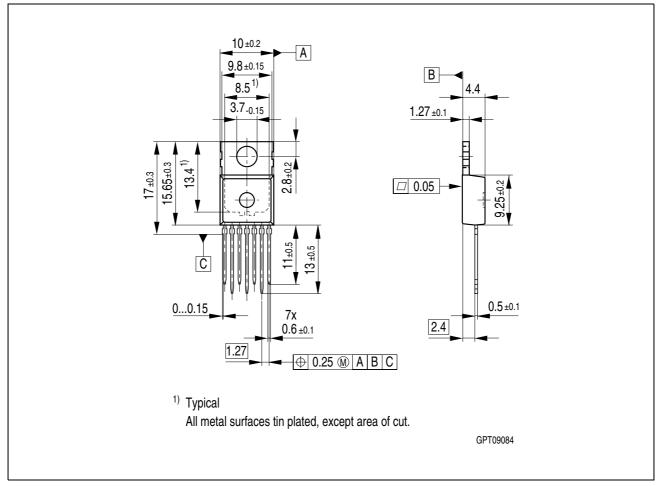


Figure 7 PG-TO220-7-11 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)


To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

Figure 8 PG-TO220-7-12 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

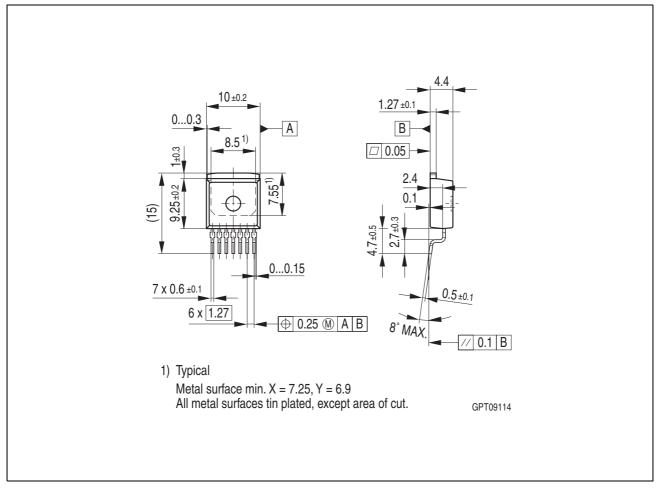


Figure 9 PG-TO263-7-1 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

Revision History

Version	Date	Changes
Rev. 2.7	2007-03-20	Initial version of RoHS-compliant derivate of TLE 4271-2 Page 1: AEC certified statement added Page 1 and Page 19 ff: RoHS compliance statement and Green product feature added Page 1 and Page 19 ff: Package changed to RoHS compliant version Legal Disclaimer updated

Edition 2007-06-25

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2007 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.