

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

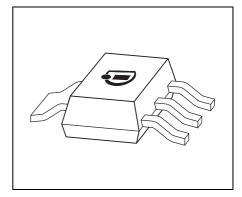
Contact us

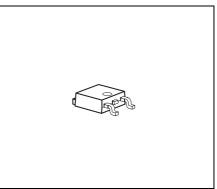
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Voltage Regulator


TLE 4274 / 3.3V;2.5V


Features

- Output voltage: 3.3 V/2.5 V \pm 4%
- Current capability 400 mA
- Very low current consumption
- Short-circuit proof
- Reverse polarity proof
- Suitable for use in automotive electronics
- Green Product (RoHS compliant)
- AEC Qualified

Functional Description

The TLE 4274 / 3.3V;2.5V is a voltage regulator available in a SOT223 and TO252 package. The IC regulates an input voltage up to 40 V to $V_{\rm Qrated} = 3.3$ V/2.5 V. The maximum output current is 400 mA. The IC is short-circuit proof and has a shutdown circuit protecting it against overtemperature. The TLE 4274 is also available as 5 V, 8.5 V and 10 V version. Please refer to the data sheet TLE 4274.

Dimensioning Information on External Components

The input capacitor $C_{\rm I}$ is necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with $C_{\rm I}$, the oscillating of input inductivity and input capacitance can be damped. The output capacitor $C_{\rm Q}$ is necessary for the stability of the regulation circuit. Stability is guaranteed for capacities $C_{\rm Q} \geq$ 10 $\mu \rm F$ with an ESR of \leq 2.5 Ω within the operating temperature range.

Туре	Package
TLE 4274 GSV33	PG-SOT223-4
TLE 4274 DV33	PG-TO252-3-11
TLE 4274 GSV25	PG-SOT223-4

Data Sheet 1 Rev. 2.3, 2008-03-10

Circuit Description

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The IC also includes a number of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

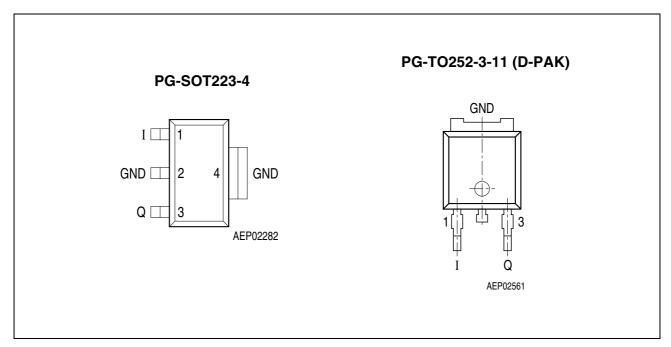


Figure 1 Pin Configuration (top view)

Table 1 Pin Definitions and Functions

Pin No.	Symbol	Function
1	I	Input; block to ground directly at the IC with a ceramic capacitor.
2, 4	GND	Ground; PG-TO252-3-11: internally connected to heatsink
3	Q	Output; block to ground with capacitor $C_Q \ge 10 \mu F$, ESR $\le 2.5 \Omega$

Data Sheet 2 Rev. 2.3, 2008-03-10

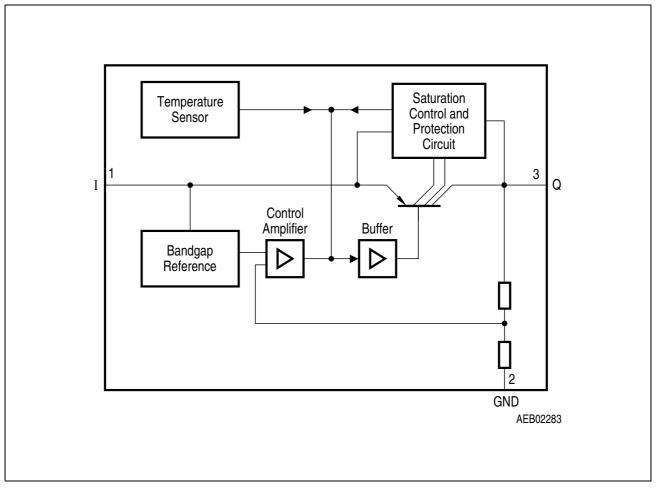


Figure 2 Block Diagram

Data Sheet 3 Rev. 2.3, 2008-03-10

 Table 2
 Absolute Maximum Ratings

 $T_{\rm i}$ = -40 to 150 °C

Parameter	Symbol	Limit Values		Unit	Test Condition
		Min.	Max.		
Input	-			•	
Voltage	V_{I}	-42	45	V	_
Current	I_{I}	_	_	_	Internally limited
Output				•	•
Voltage	V_{Q}	-1.0	40	V	_
Current	I_{Q}	_	_	_	Internally limited
Ground	·				
Current	I_{GND}	_	100	mA	_
Temperature					
Junction temperature	T_{j}	_	150	°C	_
Storage temperature	$T_{ m stg}$	-50	150	°C	_

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Table 3 Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		Min.	Max.		
Input voltage	V_{I}	4.7	40	V	_
Junction temperature	T_{j}	-40	150	°C	_
Thermal Resistance			•	1	
Junction ambient	$R_{\rm thja}$	_	100	K/W	SOT223 ¹⁾
Junction ambient	$R_{\rm thja}$	_	70	K/W	TO252 ²⁾
Junction case	$R_{ m thjc}$	_	25	K/W	SOT223
Junction case	R_{thjc}	_	4	K/W	TO252

¹⁾ Soldered in, 1 cm² copper area at pin 4, FR4

Data Sheet 4 Rev. 2.3, 2008-03-10

²⁾ Soldered in, minimal footprint, FR4

Table 4 Characteristics

 $V_{\rm I}$ = 6 V; -40 °C < $T_{\rm j}$ < 150 °C (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Measuring Condition
		Min.	Тур.	Max.		
Output voltage V33-Version	V_{Q}	3.17	3.3	3.44	V	$5 \text{ mA} < I_{\text{Q}} < 400 \text{ mA}$ $4.7 \text{ V} < V_{\text{I}} < 28 \text{ V}$
Output voltage V33-Version	V_{Q}	3.17	3.3	3.44	V	$ 5 \text{ mA} < I_{\text{Q}} < 200 \text{ mA} $
Output voltage V25-Version	V_{Q}	2.4	2.5	2.6	V	$5 \text{ mA} < I_{\text{Q}} < 400 \text{ mA}$ $4.7 \text{ V} < V_{\text{I}} < 28 \text{ V}$
Output voltage V25-Version	V_{Q}	2.4	2.5	2.6	V	$5 \text{ mA} < I_{\text{Q}} < 200 \text{ mA}$ $4.7 \text{ V} < V_{\text{I}} < 40 \text{ V}$
Output current limitation ¹⁾	I_{Q}	400	600	_	mA	_
Current consumption; $I_q = I_l - I_Q$	I_{q}	_	100	220	μΑ	I_{Q} = 1 mA
Current consumption; $I_q = I_l - I_Q$	I_{q}	_	8	15	mA	$I_{\rm Q}$ = 250 mA
Current consumption; $I_q = I_l - I_Q$	I_{q}	_	20	30	mA	$I_{\rm Q}$ = 400 mA
Drop voltage ¹⁾ V33-Version	V_{dr}	_	0.7	1.2	V	$I_{\rm Q}$ = 300 mA $V_{\rm dr}$ = $V_{\rm I}$ - $V_{\rm Q}$
Drop voltage ¹⁾ V25-Version	V_{dr}	_	1.0	2.0	V	$I_{\rm Q}$ = 300 mA $V_{\rm dr}$ = $V_{\rm I}$ - $V_{\rm Q}$
Load regulation	ΔV_{Q}	_	40	70	mV	$I_{\rm Q}$ = 5 mA to 300 mA; $V_{\rm I}$ = 6 V
Line regulation	ΔV_{Q}	_	10	25	mV	$\Delta V_{\rm I}$ = 12 V to 32 V $I_{\rm Q}$ = 5 mA
Power supply ripple rejection	PSRR	_	60	_	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 Vpp
Temperature output voltage drift	$\mathrm{d}V_{\mathrm{Q}}/\mathrm{d}T$	_	0.5	_	mV/K	_

¹⁾ Measured when the output voltage $V_{\rm Q}$ has dropped 100 mV from the nominal value obtained at $V_{\rm I}$ = 6 V.

Data Sheet 5 Rev. 2.3, 2008-03-10

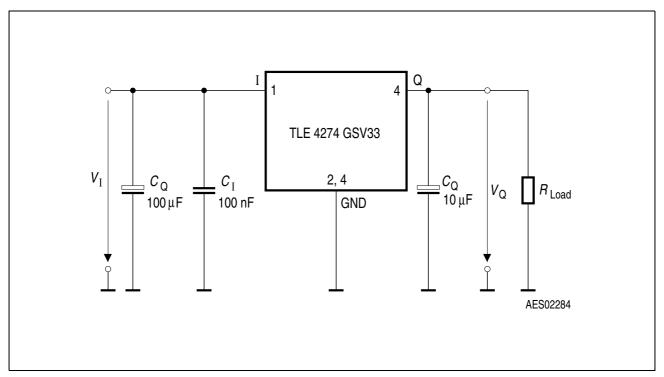


Figure 3 Measuring Circuit

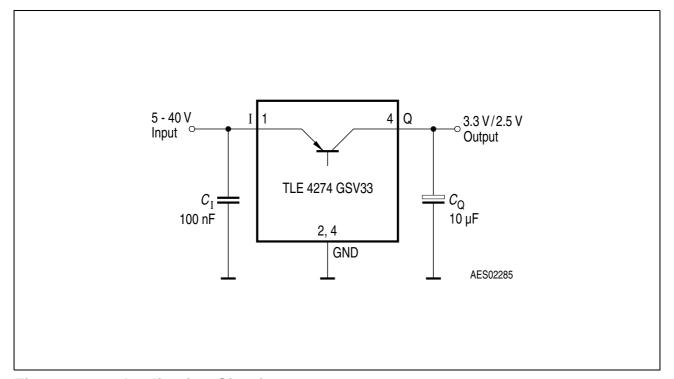
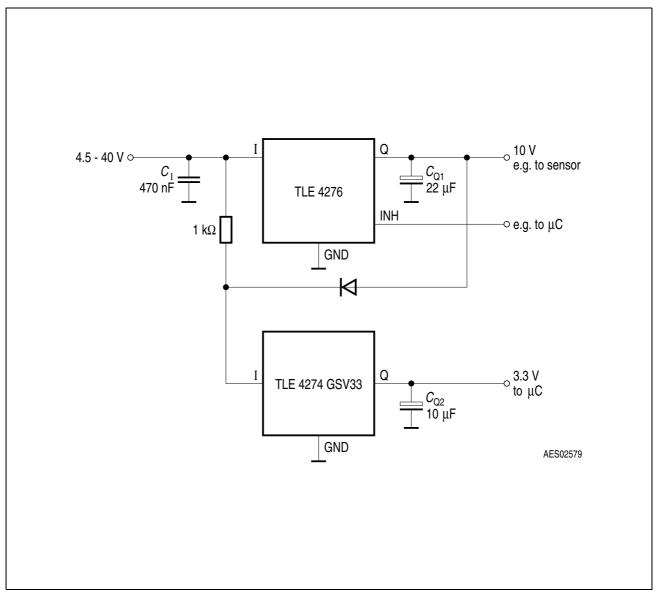
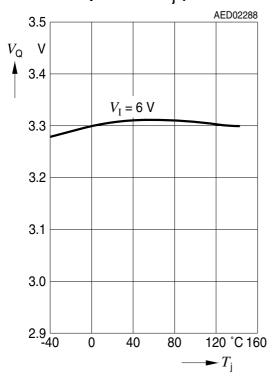


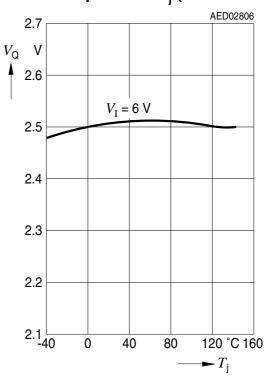
Figure 4 Application Circuit

Data Sheet 6 Rev. 2.3, 2008-03-10

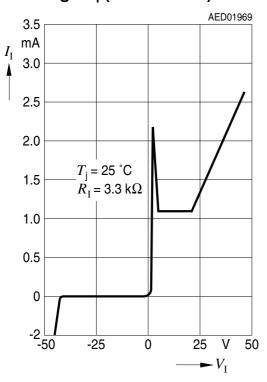


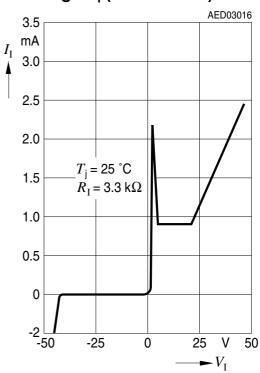

Figure 5 Application Example

Data Sheet 7 Rev. 2.3, 2008-03-10

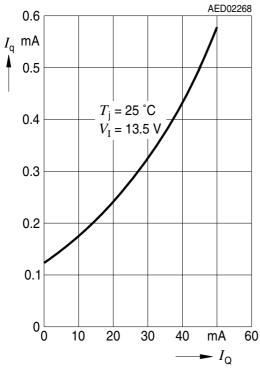


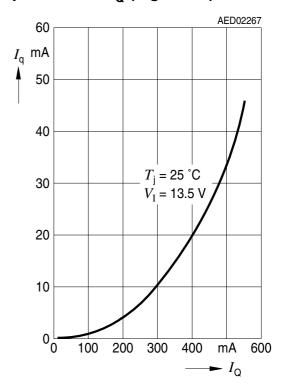
Typical Performance Characteristics

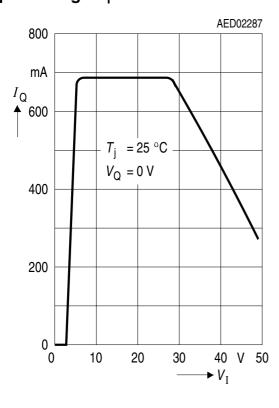

Output Voltage $V_{\rm Q}$ versus Junction Temperature $T_{\rm i}$ (V33-Version)

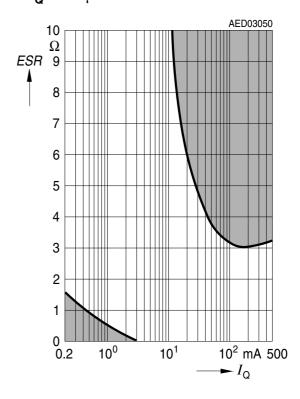

Output Voltage $V_{\rm Q}$ versus Junction Temperature $T_{\rm i}$ (V25-Version)

Input Current $I_{\rm q}$ versus Input Voltage $V_{\rm I}$ (V33-Version)


Input Current $I_{\rm q}$ versus Input Voltage $V_{\rm I}$ (V25-Version)


Data Sheet 8 Rev. 2.3, 2008-03-10


Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$ (low load)


Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$ (high load)

Output Current I_Q versus Input Voltage V_1

Region of Stability for $C_Q = 10 \,\mu\text{F}$

9 **Data Sheet** Rev. 2.3, 2008-03-10

Package Outlines

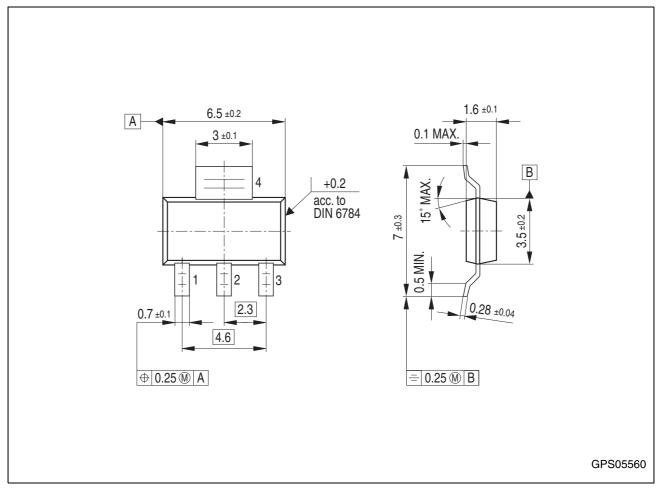
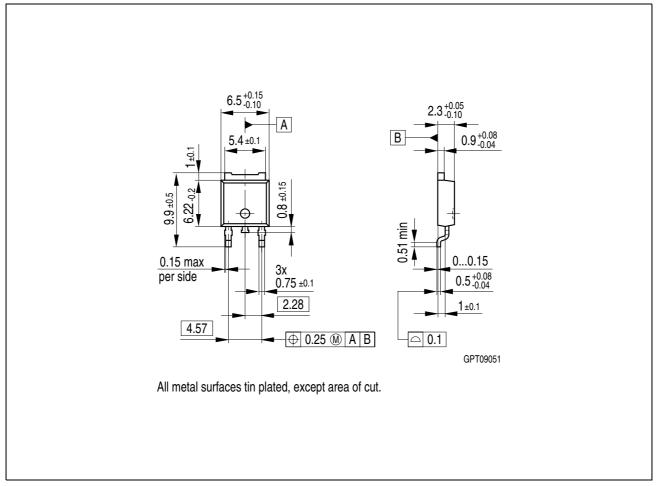


Figure 6 PG-SOT223-4 (Plastic Small Outline Transistor)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).


You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

Data Sheet 10 Rev. 2.3, 2008-03-10

Figure 7 PG-TO252-3-11 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

Data Sheet 11 Rev. 2.3, 2008-03-10

Revision History

Version	Date	Changes
Rev. 2.3	2008-03-10	Simplified package name to PG-SOT223-4. No modification of released product.
Rev. 2.2	2007-03-20	Initial version of RoHS-compliant derivate of TLE 4274 / 3.3V;2.5V Page 1: AEC certified statement added Page 1 and Page 10: RoHS compliance statement and Green product feature added Page 1 and Page 10: Package changed to RoHS compliant version Legal Disclaimer updated

Edition 2008-03-10

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.