imall

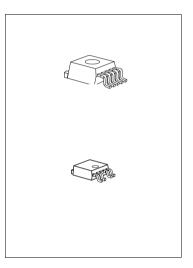
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Low Drop Voltage Regulator

TLE 4276-2

Features

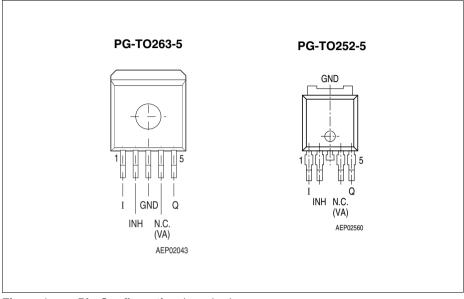
- 5 V or variable output voltage
- Output voltage tolerance $\leq \pm 2\%$
- 400 mA current capability
- Low-drop voltage
- Inhibit input
- Very low current consumption
- Short-circuit-proof
- Reverse polarity proof
- Suitable for use in automotive electronics
- Green Product (RoHS compliant)
- AEC Qualified

Туре	Package	Marking
TLE 4276-2 GV50	PG-TO263-5	4276-2V5
TLE 4276-2 GV	PG-TO263-5	4276-2V
TLE 4276-2 DV50	PG-TO252-5	4276-2V5
TLE 4276-2 DV	PG-TO252-5	4276-2V

Functional Description

The TLE 4276-2 is a low-drop voltage regulator in a TO package. The IC regulates an input voltage up to 40 V to $V_{Q,nom} = 5.0$ V (V50) or adjustable voltage (V). The maximum output current is 400 mA. The IC can be switched off via the inhibit input, which causes the current consumption to drop below 10 μ A. The IC is short-circuit-proof and includes temperature protection which turns off the device at overtemperature.

Dimensioning Information on External Components


The input capacitor $C_{\rm l}$ is necessary for compensation of line influences. Using a resistor of approx. 1 Ω in series with $C_{\rm l}$, the oscillating of input inductivity and input capacitance can be damped. The output capacitor $C_{\rm Q}$ is necessary for the stability of the regulation circuit. Stability is guaranteed at values $C_{\rm Q} \ge 22 \ \mu\text{F}$ and an ESR of $\le 3 \ \Omega$ within the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

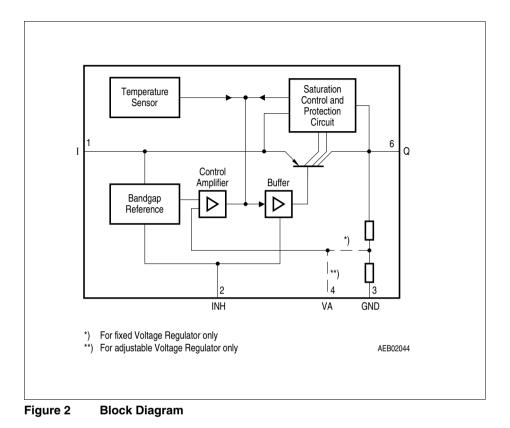


Figure 1 Pin Configuration (top view)

Table 1 Pin Definitions and Functions

Pin No.	Symbol	Function
1	I	Input; block to ground directly at the IC with a ceramic capacitor.
2	INH	Inhibit; low-active input.
3	GND	Ground
4	N.C. VA	Not connected for V50 Voltage Adjust Input; only for adjustable version. Connect an external voltage divider to determine the output voltage.
5	Q	Output; block to GND with a \ge 22 μ F capacitor, ESR \le 3 Ω at 10 kHz
Heat Tab		Connect to GND.

Parameter	Symbol	Limi	t Values	Unit	Test Condition	
		Min.	Max.			
Input I	I		k	4		
Voltage	$V_{\rm I}$	-42	45	V	-	
Current	I	-	-	-	Internally limited	
Inhibit INH	i.		L			
Voltage	$V_{\sf INH}$	-42	45	V	-	
Voltage Adjust Inp	out VA		L			
Voltage	$V_{\sf VA}$	-0.3	10	V	-	
Output Q						
Voltage	V_{Q}	-1.0	40	V	-	
Current	IQ	-	-	-	Internally limited	
Ground GND						
Current	$I_{\rm GND}$	_	100	mA	-	

Table 2 Absolute Maximum Ratings

Temperature

Junction temperature	Tj	-40	150	°C	-
Storage temperature	$T_{\rm stg}$	-50	150	°C	_

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Table 3 ESD Rating

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
ESD Capability	$V_{\rm ESD,HBM}$	-2	2	kV	Human Body Model

Table 4Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks	
		Min.	Max.			
Input voltage	VI	V _Q + 0.5	40	V	Fixed voltage device V50	
Input voltage	$V_{\rm I}$	$V_{\rm Q}$ + 0.5	40	V	Variable device V	
Input voltage	VI	4.5 V	40	V	Variable device V, $V_{\rm Q}$ < 4 V	
Junction temperature	Tj	-40	150	°C	-	

Table 5 Thermal Resistance

Parameter	ameter Symbol Limit Value		Unit	Conditions		
		Min.	Тур.	Max.		
Junction to Case ¹⁾	R_{thJC}	-	3.0	-	K/W	-
Junction to Ambient ¹⁾	R _{thJA}	-	78	-	K/W	PG-TO252-5 300mm ² heatsink area on PCB ²⁾
Junction to Ambient ¹⁾	R _{thJA}	-	53	-	K/W	PG-TO263-5 300mm ² heatsink area on PCB ²⁾

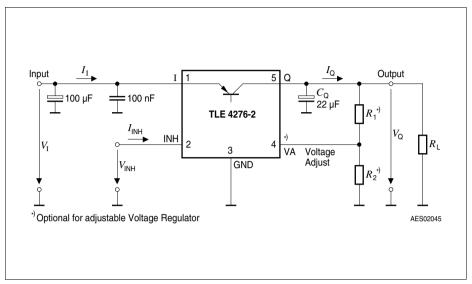
1) not subject to production test, specified by design

2) EIA/JESD 52_2, FR4, $80\times80\times1.5$ mm; 35 μ Cu, 5 μ Sn

Table 6 Characteristics

 $V_{\rm l}$ = 13.5 V; -40 $^{\circ}{\rm C}$ < $T_{\rm j}$ < 150 $^{\circ}{\rm C}$ (unless otherwise specified)

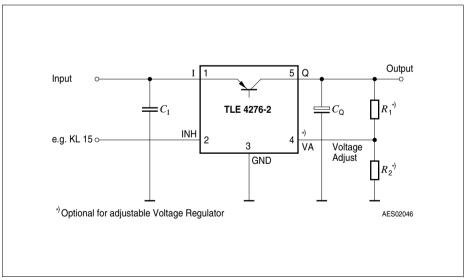
Parameter	Sym-	Lir	nit Val	ues	Unit	Measuring	Measuring Circuit
	bol	Min.	Тур.	Max.		Condition	
Output voltage	V _Q	4.9	5.0	5.1	V	V50-Version 5 mA < I_{Q} < 300 mA 6 V < V_{I} < 28 V	1
Output voltage	V _Q	4.8	5.0	5.2	V	V50-Version 5 mA < I_{Q} < 400 mA 6 V < V_{I} < 28 V	1
Output voltage	V _Q	4.8	5.0	5.2	V	V50-Version 5 mA < I_{Q} < 200 mA 6 V < V_{I} < 40 V	1
Output voltage tolerance	ΔV_{Q}	-2	_	2	%	$V-Version \\ R_2 < 50 \text{ k}\Omega \\ V_Q + 1 \text{ V} \le V_1 \le 28 \text{ V} \\ V_1 > 4.5 \text{ V} \\ 5 \text{ mA} \le I_Q \le 300 \text{ mA} \\ \end{cases}$	1
Output voltage tolerance	ΔV_{Q}	-4	_	4	%	$V-Version \\ R_2 < 50 \text{ k}\Omega \\ V_Q + 1 \text{ V} \le V_1 \le 40 \text{ V} \\ V_1 > 4.5 \text{ V} \\ 5 \text{ mA} \le I_Q \le 400 \text{ mA} \\ \end{cases}$	1
Output current limitation ¹⁾	IQ	400	600	1100	mA	-	1
Currentconsumption; $I_q = I_1 - I_Q$	I _q	-	-	10	μA	$V_{\rm INH}$ = 0 V; $T_{\rm j} \leq$ 100 °C	1
Current consumption; $I_q = I_1 - I_Q$	Iq	-	100	220	μA	<i>I</i> _Q = 1 mA	1
Current consumption; $I_q = I_1 - I_Q$	Iq	-	5	10	mA	<i>I</i> _Q = 250 mA	1
Current consumption; $I_q = I_1 - I_Q$	Iq	-	15	25	mA	<i>I</i> _Q = 400 mA	1

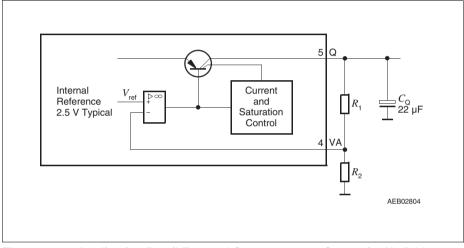

Table 6 Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; -40 °C < $T_{\rm I}$ < 150 °C (unless otherwise specified)

Parameter	Sym-	Lir	nit Val	ues	Unit	Measuring	Measuring
	bol	Min.	Тур.	Max.	1	Condition	Circuit
Drop voltage ¹⁾	V _{DR}	-	250	500	mV	V50 $I_{\rm Q}$ = 250 mA $V_{\rm DR}$ = $V_{\rm I}$ - $V_{\rm Q}$	1
Drop voltage ¹⁾	V _{DR}	_	250	500	mV	variable devices $I_{\rm Q}$ = 250 mA $V_{\rm I}$ > 4.5 V $V_{\rm DR}$ = $V_{\rm I}$ - $V_{\rm Q}$	1
Load regulation	$\Delta V_{\rm Q,Lo}$	-	5	35	mV	$I_{\rm Q}$ = 5 mA to 400 mA	1
Line regulation	$\Delta V_{\rm Q,Li}$	-	15	25	mV	$\Delta V_{\rm I}$ = 12 V to 32 V $I_{\rm Q}$ = 5 mA	1
Power supply ripple rejection	PSRR	-	54	-	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 Vpp	1
Temperature output voltage drift	dV_Q/dT	_	0.5	_	_	-	mV/K
Inhibit							
Inhibit on voltage	$V_{\rm INH}$	-	2	3.5	V	$V_{\rm Q} \ge 4.9 \ {\rm V}$	1
Inhibit off voltage	$V_{\rm INH}$	0.5	1.7	-	V	$V_{\rm Q} \le 0.1 \ { m V}$	1
Input current	$I_{\rm INH}$	5	10	20	μA	$V_{\rm INH} = 5 \rm V$	1

 Image: Substraining the second state of the second sta




Figure 4 Application Circuit

Application Information for Variable Output Regulator TLE 4276-2 DV, GV

The output voltage of the TLE 4276-2 DV, GV can be adjusted between 2.5 V and 20 V by an external output voltage divider, closing the control loop to the voltage adjust pin VA.

The voltage at pin VA is compared to the internal reference of typical 2.5 V in an error amplifier. It controls the output voltage.

Figure 5 Application Detail External Components at Output for Variable Voltage Regulator

The output voltage is calculated according to Equation (1):

$$V_{\rm Q} = (R_1 + R_2)/R_2 \times V_{\rm ref}$$
, neglecting $I_{\rm VA}$

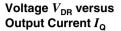
 $V_{\rm ref}$ is typically 2.5 V.

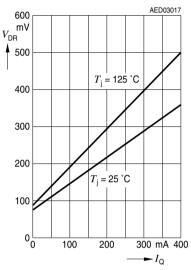
To avoid errors caused by leakage current I_{VA} , we recommend to choose the resistor value R_2 according to Equation (2):

 $R_2 < 50 \text{ k}\Omega$

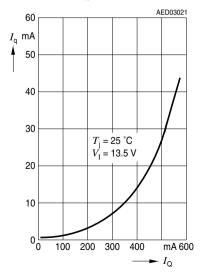
(2)

(1)

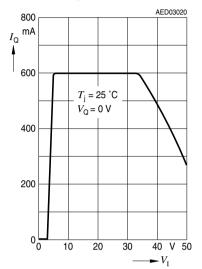

For a 2.5 V output voltage the output pin Q is directly connected to the adjust pin VA.

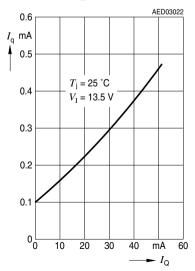

The accuracy of the resistors R_1 and R_2 add an additional error to the output voltage tolerance.

The operation range of the variable TLE 4276-2 DV, GV is V_Q + 0.5 V to 40 V. For internal biasing a minimum input voltage of 4.3 V is required. For output voltages below 4 V the voltage drop is 4.3 V - V_Q

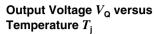


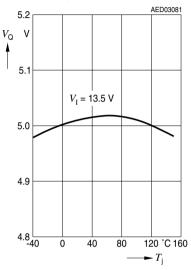
Typical Performance Characteristics V50:

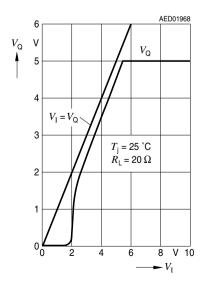


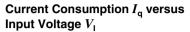

Current Consumption I_q versus Output Current I_Q (high load)

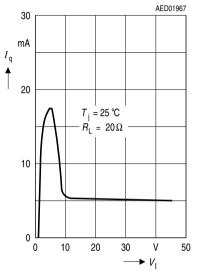
Max. Output Current I_{Q} versus Input Voltage V_{I}

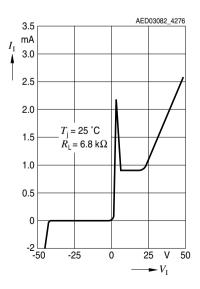



Current Consumption I_q versus Output Current I_Q (low load)




Typical Performance Characteristics for V50:




Low Voltage Behavior

High Voltage Behavior

Package Outlines

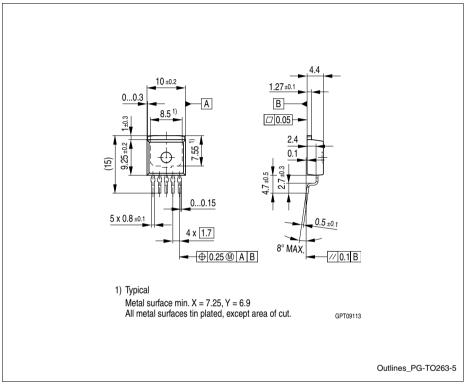


Figure 6 PG-TO263-5 (Plastic Green Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

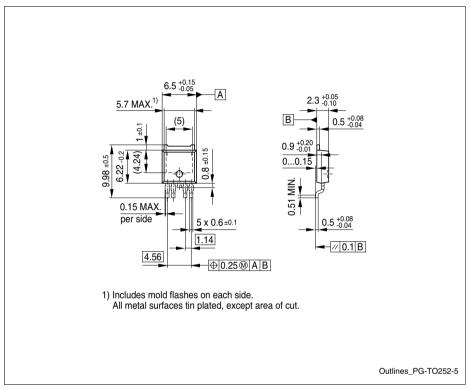


Figure 7 PG-T0252-5 (Plastic Green Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

Revision History

Version	Date	Changes
Rev. 1.0	2007-08-07	First Version Data Sheet
Rev. 1.1	2007-09-21	Second Version Data Sheet

Edition 2007-09-21 Published by Infineon Technologies AG 81726 Munich, Germany © 2007 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.