imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

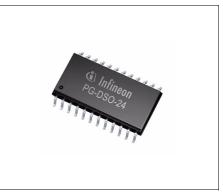
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2-Phase Stepper-Motor Driver

TLE4726G



Bipolar IC

Overview

Features

- 2× 0.75 A / 50 V outputs
- Integrated driver, control logic and current control (chopper)
- Fast free-wheeling diodes
- Low standby-current drain
- Full, half, quarter, mini step

PG-DSO-24-13

Туре	Ordering Code	Package
TLE4726G	On Request	PG-DSO-24-13

Description

TLE4726G is a bipolar, monolithic IC for driving bipolar stepper motors, DC motors and other inductive loads that operate on constant current. The control logic and power output stages for two bipolar windings are integrated on a single chip which permits switched current control of motors with 0.75 A per phase at operating voltages up to 50 V.

The direction and value of current are programmed for each phase via separate control inputs. A common oscillator generates the timing for the current control and turn-on with phase offset of the two output stages. The two output stages in a full-bridge configuration have integrated, fast free-wheeling diodes and are free of crossover current. The logic is supplied either separately with 5 V or taken from the motor supply voltage by way of a series resistor and an integrated Z-diode. The device can be driven directly by a microprocessor with the possibility of all modes from full step through half step to mini step.

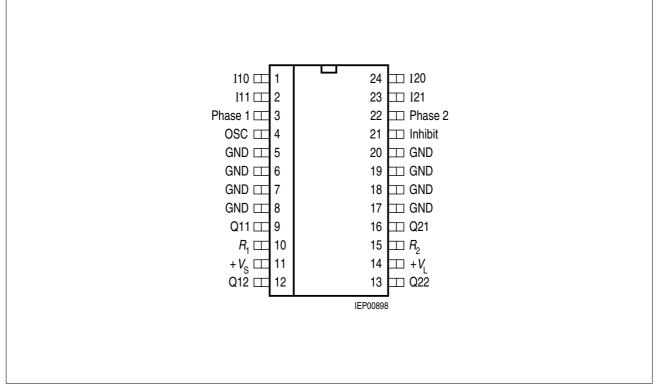


Figure 1 Pin Configuration (top view)

Pin Definitions and Functions

Pin No.	Function	on			
1, 2, 23, 24	Digital particul		-	0, IX1 for the mag	nitude of the current of the
	IX1	IX0	Phase Current	Example of Motor Status	_
	Н	Н	0	No current	_
	Н	L	1/3 I _{max}	Hold	typical I_{max} with
	L	Н	2/3 I _{max}	Set	$R_{\text{sense}} = 1 \ \Omega$: 750 mA
	L	L	I _{max}	Accelerate	_
3	-	ntial the	phase curr	-	n phase winding 1. On 11 to Q12, on L-potential in
5, 6, 7, 8, 17, 18, 19, 20	Ground	d ; all pi	ns are conn	ected internally.	
4	Oscilla 2.2 nF.	tor; wo	rks at appro	ox. 25 kHz if this p	in is wired to ground across
10	Resist	or <i>R</i> ₁ fo	r sensing th	e current in phas	e 1.
9, 12	Push-p diodes.		puts Q11, (Q12 for phase 1 w	ith integrated free-wheeling
11		electrol	tic capacito	-	as possible to the IC, with a - in parallel with a ceramic
14	a series block to	s resiste groun	or. A Z-diod d directly or	e of approx. 7 V is	V or connect to + $V_{\rm S}$ across s integrated. In both cases ble electrolytic capacitor of f 100 nF.
13, 16	Push-p diodes.		puts Q22, (221 for phase 2 w	ith integrated free-wheeling
15	Resist	or R_2 fo	r sensing th	e current in phas	e 2.
21		•		e put on standby consumption subs	by low potential on this pin. tantially.
22		ntial the	phase curr		ough phase winding 2. On 21 to Q22, on L potential in

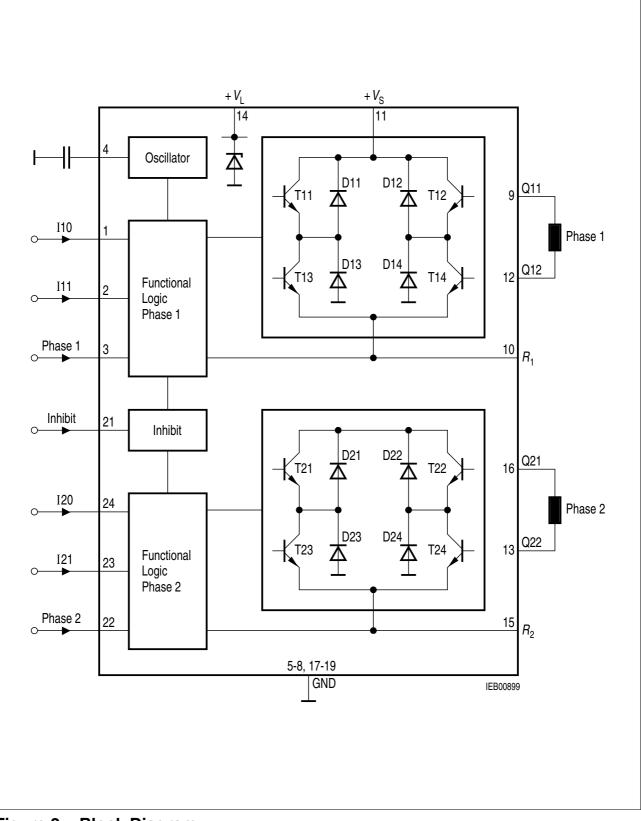


Figure 2 Block Diagram

Absolute Maximum Ratings

 $T_{\rm A}$ = - 40 to 125 °C

Parameter	Symbol	Limit	Values	Unit	Remarks
		min.	max.		
Supply voltage	Vs	0	52	V	-
Logic supply voltage	VL	0	6.5	V	Z-diode
Z-current of V _L	IL	-	50	mA	-
Output current	IQ	- 1	1	А	-
Ground current	I _{GND}	- 2	2	A	-
Logic inputs	V _{lxx}	- 6	V _L + 0.3	V	I _{XX} ; Phase 1, 2; Inhibit
R_1, R_2 , oscillator input voltage	$V_{\rm RX,}$ $V_{\rm OSC}$	- 0.3	V _L + 0.3	V	-
Junction temperature	$T_{\rm j}$ $T_{\rm j}$	-	125 150	°C °C	– max. 10,000 h
Storage temperature	T _{stg}	- 50	125	°C	-

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	Vs	5	50	V	-
Logic supply voltage	VL	4.5	6.5	V	without series resistor
Case temperature	T _C	- 25	110	°C	measured on pin 5 $P_{diss} = 2 W$
Output current	I _Q	- 800	800	mA	-
Logic inputs	V _{IXX}	- 5	VL	V	I _{XX} ; Phase 1, 2 Inhibit

Thermal Resistances

Junction ambient	$R_{ m th~ja}$	-	75	K/W	PG-DSO-24-13
Junction ambient (soldered on a 35 µm thick 20 cm ² PC boar copper area)	R _{th ja}	_	50	K/W	PG-DSO-24-13
Junction case	$R_{ m th~jc}$	_	15	K/W	measured on pin 5 PG-DSO-24-13

Note: In the operating range, the functions given in the circuit description are fulfilled.

Characteristics

 $V_{\rm S}$ = 40 V; $V_{\rm L}$ = 5 V; - 25 °C \leq $T_{\rm j} \leq$ 125 °C

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Current Consumption

from + $V_{\rm S}$	Is	_	0.2	0.5	mA	$V_{\rm inh} = L$
from + $V_{\rm S}$	Is	-	16	20	mA	$V_{int} = H$
fuere I	T		4 7			$I_{Q1/2} = 0, I_{XX = L}$
from + $V_{\rm L}$	$ I_{L} $	-	1.7	3	mA	$V_{inh} = L$
from + V_{L}	I_{L}	-	18	25	mA	$V_{\rm inh} = H$
						$I_{Q1/2} = 0, I_{XX = L}$

Characteristics (cont'd)

 $V_{\rm S}$ = 40 V; $V_{\rm L}$ = 5 V; - 25 °C \leq $T_{\rm i} \leq$ 125 °C

Parameter	Symbol Limit Values			Unit	Test Condition	
		min.	typ.	max.		
Oscillator	1	1	1		-1	
Output charging current	I _{OSC}	-	110	-	μA	-
Charging threshold	VOSCL	-	1.3	_	V	_
Discharging threshold	V _{OSCH}	-	2.3	_	V	-
Frequency	fosc	18	25	40	kHz	C_{OSC} = 2.2 nF

Phase Current Selection Current Limit Threshold

No current	V _{sense n}	_	0	_	mV	IX0 = H; IX1 = H
Hold	V _{sense h}	200	250	300	mV	IX0 = L; IX1 = H
Setpoint	V _{sense s}	420	540	680	mV	IX0 = H; IX1 = L
Accelerate	$V_{ m sensea}$	700	825	950	mV	IX0 = L; IX1 = L

Logic Inputs

 $(I_{X1}; I_{X0}; Phase x)$

Threshold	V_{1}	1.4	_	2.3	V	_
		(H→L)		(L→H)		
L-input current		- 10	-	-	μA	$V_{\rm I} = 1.4 {\rm V}$
L-input current		- 100	-	-	μA	$V_{\rm I} = 0 \rm V$
H-input current	I _{IH}	—	—	10	μA	$V_{\rm I} = 5 \rm V$

Standby Cutout (inhibit)

Threshold	V_{lnh}	2	3	4	V	-
	(L→H)					
Threshold	V_{lnh}	1.7	2.3	2.9	V	-
	(H→L)					
Hysteresis	V_{lnhhy}	0.3	0.7	1.1	V	-

Internal Z-Diode

Z-voltage	V_{LZ}	6.5	7.4	8.2	V	$I_{\rm L} = 50 \text{ mA}$
-----------	----------	-----	-----	-----	---	-----------------------------

Characteristics (cont'd)

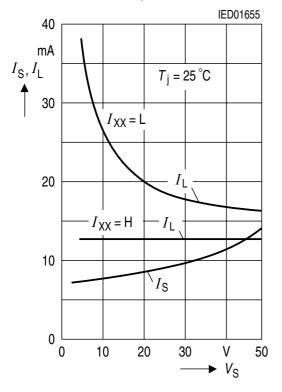
 $V_{\rm S}$ = 40 V; $V_{\rm L}$ = 5 V; - 25 °C $\leq T_{\rm i} \leq$ 125 °C

Parameter	Symbol	Liı	mit Values		Unit	Test Condition
		min.	typ.	max.		

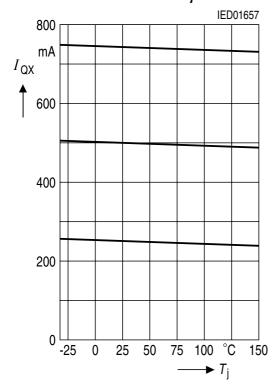
Power Outputs

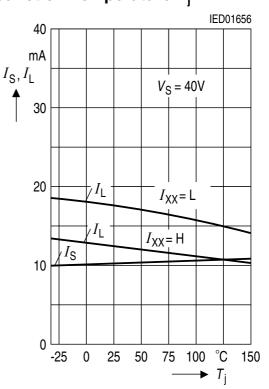
Diode Transistor Sink Pair (D13, T13; D14, T14; D23, T23; D24, T24)

Saturation voltage	V _{satl}	_	0.3	0.6	V	$I_{\rm Q} = -0.5 {\rm A}$
Saturation voltage	V _{satl}	-	0.5	1	V	$I_{\rm Q} = -0.75 {\rm A}$
Reverse current	I _{BI}	-	_	300	μA	$V_{\rm Q} = 40 \rm V$
Forward voltage	V _{FI}	-	0.9	1.3	V	$I_{\rm Q} = 0.5 {\rm A}$
Forward voltage	V_{FI}	-	1	1.4	V	$I_{\rm Q} = 0.75 {\rm A}$


Diode Transistor Source Pair (D11, T11; D12, T12; D21, T21; D22, T22)

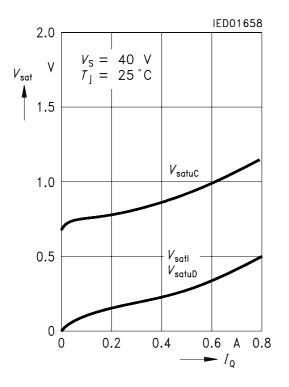
(, , , , ,						
Saturation voltage	V _{satuC}	-	0.9	1.2	V	$I_{\rm Q} = 0.5 {\rm A};$
						charge
Saturation voltage	V _{satuD}	-	0.3	0.7	V	$I_{\rm Q} = 0.5 {\rm A};$
-						discharge
Saturation voltage	V _{satuC}	-	1.1	1.4	V	$I_{\rm O} = 0.75 \text{ A};$
C C	Sulue					charge
Saturation voltage	V _{satuD}	_	0.5	1	V	$I_{\rm O} = 0.75 \text{ A};$
5	Salub					discharge
Reverse current	I _{Ru}	_	_	300	μA	$V_{\rm Q} = 0$ V
Forward voltage	V_{Fu}	_	1	1.3	v.	$I_{0} = -0.5 \text{ A}$
Forward voltage	V_{Fu}	_	1.1	1.4	V	$I_{\rm Q}^{\rm Q} = -0.75 {\rm A}$
Diode leakage current	I _{SL}	_	1	2	mA	$I_{\rm F} = -0.75 {\rm A}$
g	-3L		-		· · · ·	-r


Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_A = 25$ °C and the given supply voltage.

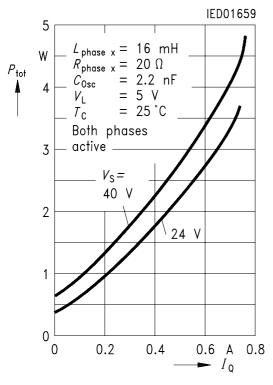

Quiescent Current I_{S} , I_{L} versus Supply Voltage V_{S}

Output Current I_{QX} versus Junction Temperature T_j

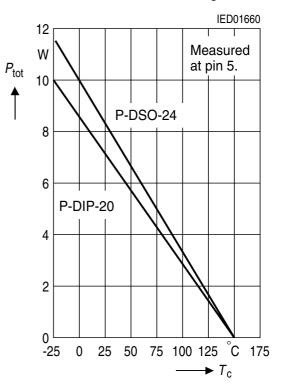
Quiescent Current $I_{\rm S}$, $I_{\rm L}$ versus Junction Temperature $T_{\rm i}$



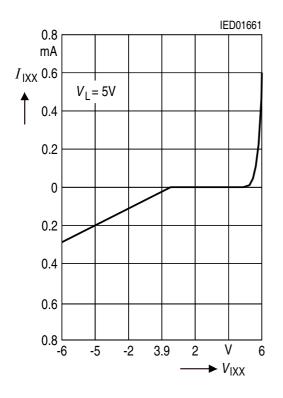
Operating Condition:

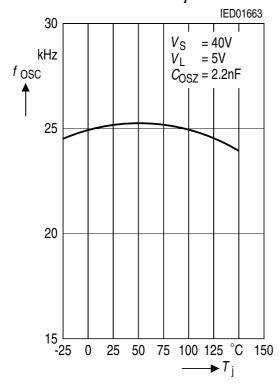

 $\begin{array}{ll} V_{\rm L} &= 5 \ {\rm V} \\ V_{\rm lnh} &= {\rm H} \\ C_{\rm OSC} &= 2.2 \ {\rm nF} \\ R_{\rm sense} &= 1 \ \Omega \\ {\rm Load:} \ {\rm L} = 10 \ {\rm mH} \\ R &= 2.4 \ \Omega \\ f_{\rm phase} &= 50 \ {\rm Hz} \\ {\rm mode:} \ {\rm fullstep} \end{array}$

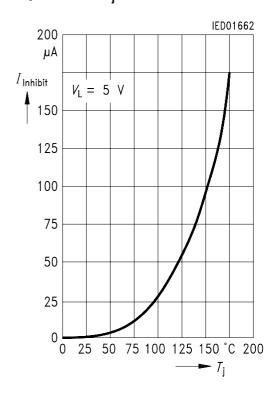

Output Saturation Voltages $V_{\rm sat}$ versus Output Current $I_{\rm Q}$

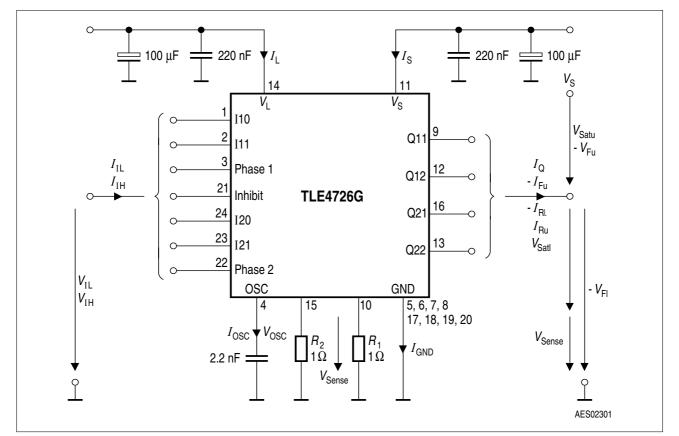

Typical Power Dissipation P_{tot} versus Output Current I_Q (Non Stepping)

Forward Current $I_{\rm F}$ of Free-Wheeling Diodes versus Forward Voltages $V_{\rm F}$


Permissible Power Dissipation P_{tot} versus Case Temperature T_{c}




Input Characteristics of I_{xx} , Phase X, Inhibit


Oscillator Frequency $f_{\rm OSC}$ versus Junction Temperature $T_{\rm j}$

Input Current of Inhibit versus Junction Temperature T_{i}

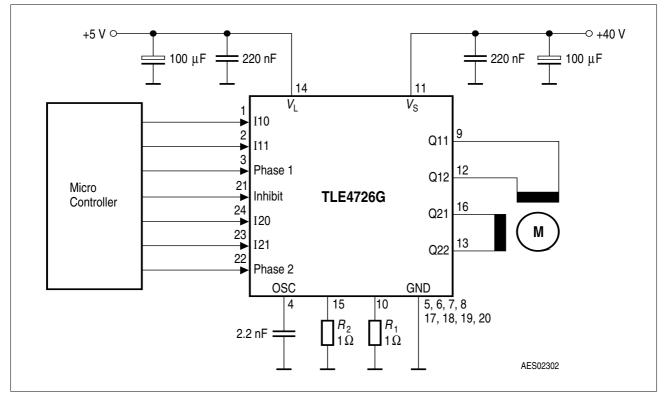


Figure 4 Application Circuit

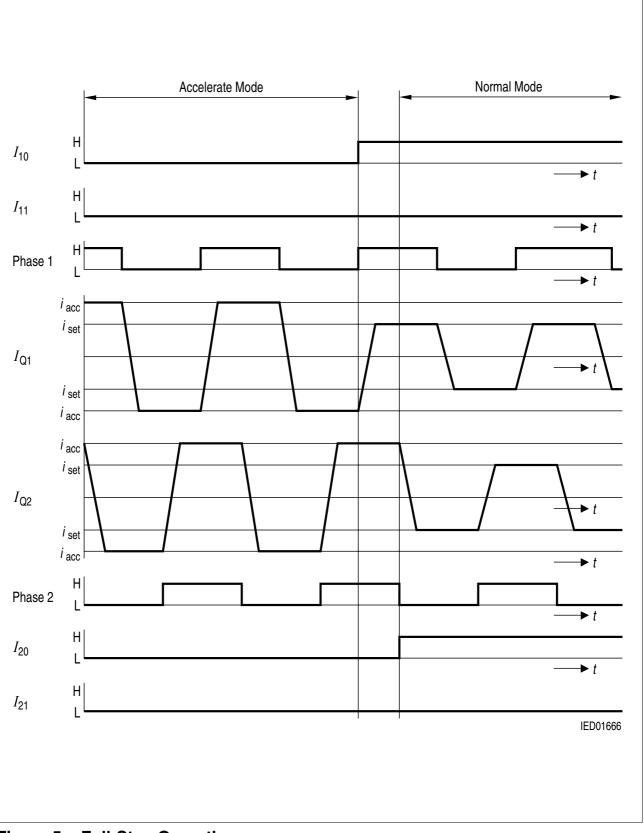
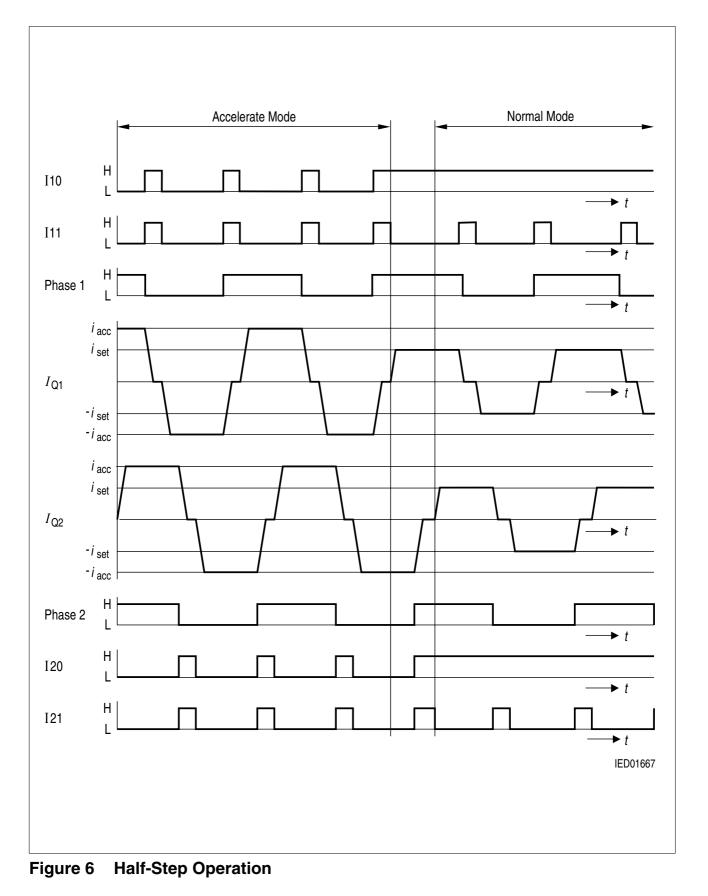



Figure 5 Full-Step Operation

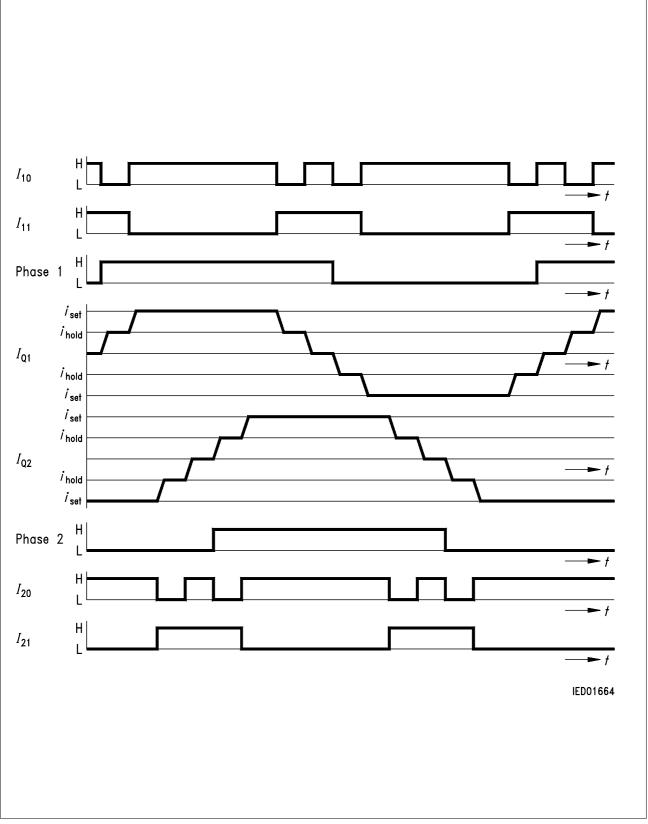


Figure 7 Quarter-Step Operation

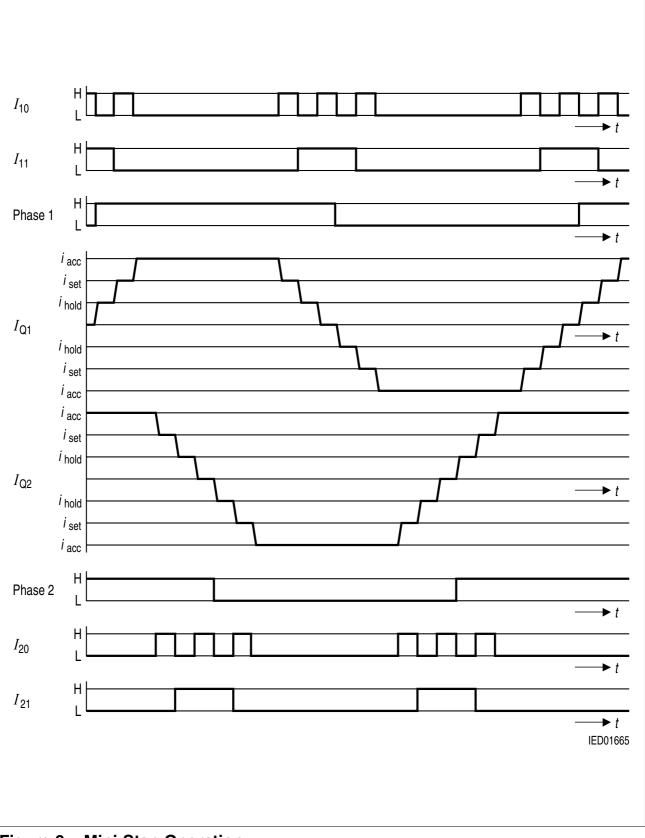
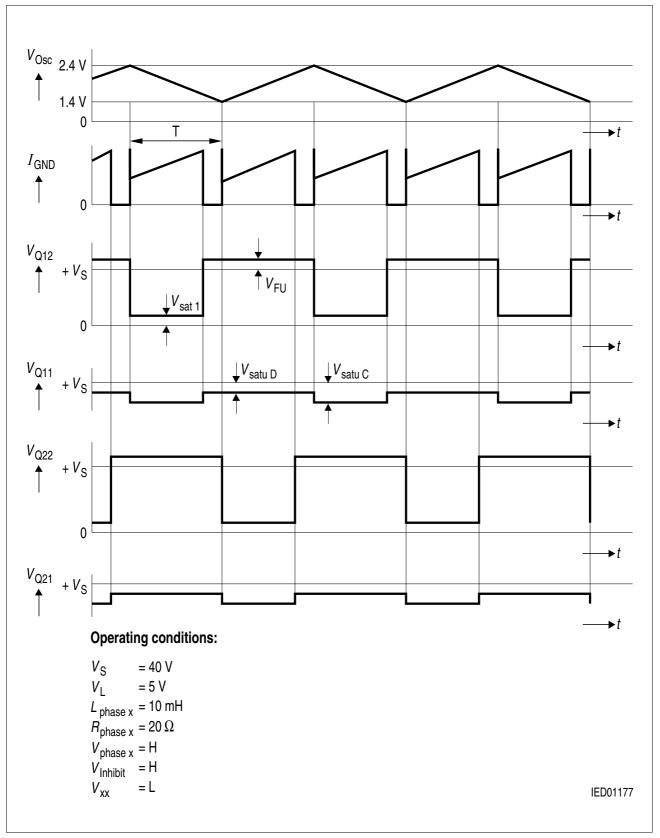



Figure 8 Mini-Step Operation

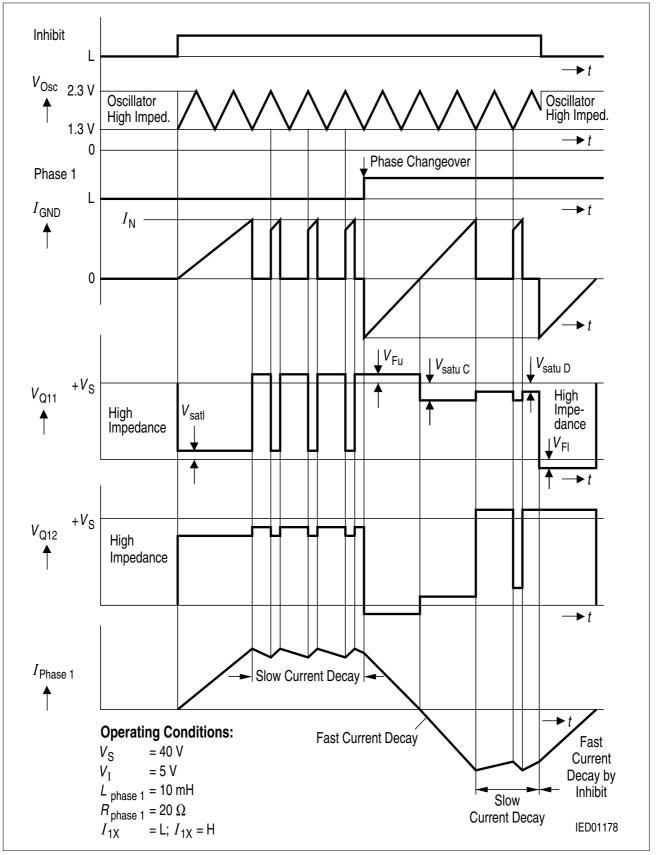


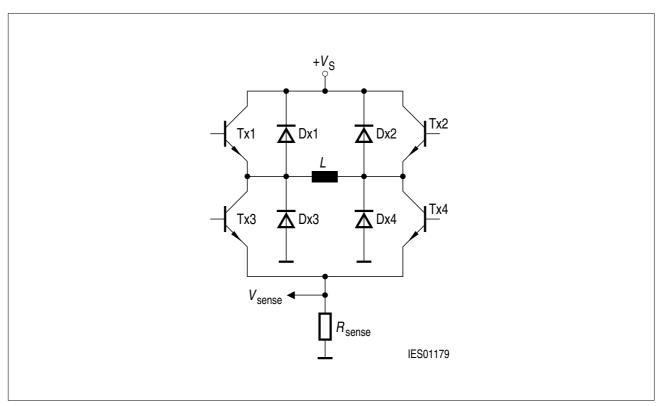
Figure 10 Phase Reversal and Inhibit

Calculation of Power Dissipation

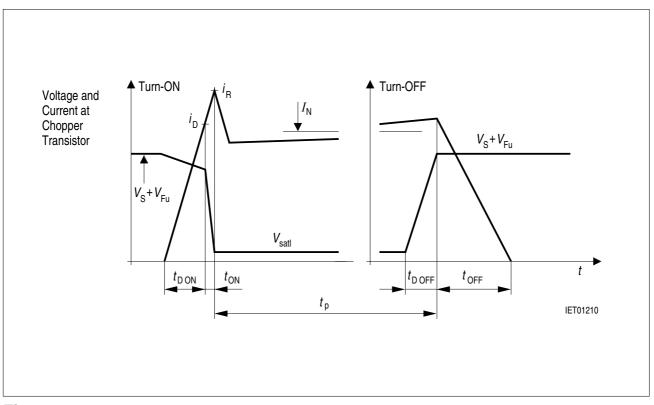
The total power dissipation P_{tot} is made up of

saturation losses P_{sat}	(transistor saturation voltage and diode forward voltages),
quiescent losses P_q	(quiescent current times supply voltage) and
switching losses P_s	(turn-ON / turn-OFF operations).

The following equations give the power dissipation for chopper operation without phase reversal. This is the worst case, because full current flows for the entire time and switching losses occur in addition.


$$P_{\text{tot}} = 2 \times P_{\text{sat}} + P_{\text{q}} + 2 \times P_{\text{s}}$$
where
$$P_{\text{sat}} \cong I_{\text{N}} \{ V_{\text{satl}} \times d + V_{\text{Fu}} (1 - d) + V_{\text{satuC}} \times d + V_{\text{satuD}} (1 - d) \}$$

$$P_{\text{q}} = I_{\text{q}} \times V_{\text{S}} + I_{\text{L}} \times V_{\text{L}}$$


$$P_{\text{S}} \cong \frac{V_{\text{S}}}{T} \left\{ \frac{i_{\text{D}} \times t_{\text{DON}}}{2} + \frac{i_{\text{D}} + i_{\text{R}} \times t_{\text{ON}}}{4} + \frac{I_{\text{N}}}{2} t_{\text{DOFF}} + t_{\text{OFF}} \right\}$$

- $I_{\rm N}$ = nominal current (mean value)
- I_q = quiescent current
- $i_{\rm D}$ = reverse current during turn-on delay
- $i_{\rm B}$ = peak reverse current
- $t_{\rm p}$ = conducting time of chopper transistor
- t_{ON} = turn-ON time
- t_{OFF} = turn-OFF time
- $t_{\rm DON}$ = turn-ON delay
- t_{DOFF} = turn-OFF delay
- T = cycle duration
- $d = \text{duty cycle } t_{\text{p}}/T$
- V_{satl} = saturation voltage of sink transistor (T3, T4)
- V_{satuC} = saturation voltage of source transistor (T1, T2) during charge cycle
- V_{satuD} = saturation voltage of source transistor (T1, T2) during discharge cycle
- V_{Fu} = forward voltage of free-wheeling diode (D1, D2)
- $V_{\rm S}$ = supply voltage
- $V_{\rm L}$ = logic supply voltage
- $I_{\rm L}$ = current from logic supply

Figure 11

Figure 12

Application Hints

The TLE726G is intended to drive both phases of a stepper motor. Special care has been taken to provide high efficiency, robustness and to minimize external components.

Power Supply

The TLE726G will work with supply voltages ranging from 5 V to 50 V at pin $V_{\rm S}$. As the circuit operates with chopper regulation of the current, interference generation problems can arise in some applications. Therefore the power supply should be decoupled by a 0.22 μ F ceramic capacitor located near the package. Unstabilized supplies may even afford higher capacities.

Current Sensing

The current in the windings of the stepper motor is sensed by the voltage drop across R_1 and R_2 . Depending on the selected current internal comparators will turn off the sink transistor as soon as the voltage drop reaches certain thresholds (typical 0 V, 0.25 V, 0.5 V and 0.75 V); (R_1 , $R_2 = 1 \Omega$). These thresholds are neither affected by variations of V_L nor by variations of V_S .

Due to chopper control fast current rises (up to 10 A/ μ s) will occur at the sensing resistors R_1 and R_2 . To prevent malfunction of the current sensing mechanism R_1 and R_2 should be pure ohmic. The resistors should be wired to GND as directly as possible. Capacitive loads such as long cables (with high wire to wire capacity) to the motor should be avoided for the same reason.

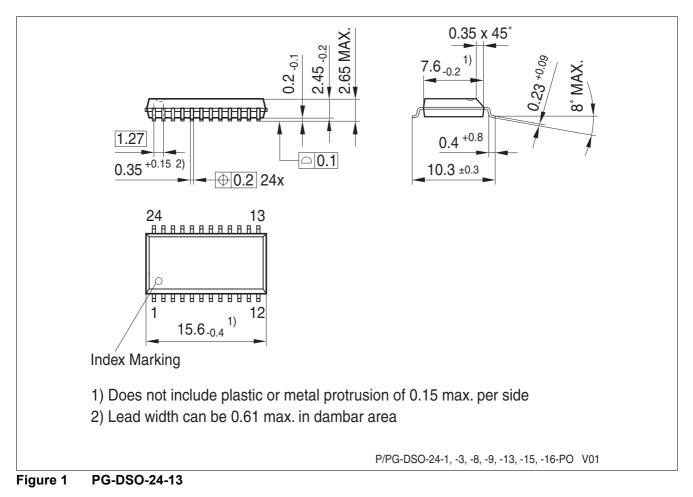
Synchronizing Several Choppers

In some applications synchrone chopping of several stepper motor drivers may be desireable to reduce acoustic interference. This can be done by forcing the oscillator of the TLE726G by a pulse generator overdriving the oscillator loading currents (approximately \pm 100 µA). In these applications low level should be between 0 V and 1 V while high level should be between 2.6 V and $V_{\rm L}$.

Optimizing Noise Immunity

Unused inputs should always be wired to proper voltage levels in order to obtain highest possible noise immunity.

To prevent crossconduction of the output stages the TLE4726G uses a special break before make timing of the power transistors. This timing circuit can be triggered by short glitches (some hundred nanoseconds) at the Phase inputs causing the output stage to become high resistive during some microseconds. This will lead to a fast current decay during that time. To achieve maximum current accuracy such glitches at the Phase inputs should be avoided by proper control signals.


Thermal Shut Down

To protect the circuit against thermal destruction, thermal shut down has been implemented. To provide a warning in critical applications, the current of the sensing element is wired to input Inhibit. Before thermal shut down occurs Inhibit will start to pull down by some hundred microamperes. This current can be sensed to build a temperature prealarm.

Package Outlines

1 Package Outlines

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website: http://www.infineon.com/packages.

Revision History

2 Revision History

Revision	Date	Changes
1.1	2008-06-17	Initial version of RoHS-compliant derivate of TLE4726
		Page 1: AEC certified statement added
		Page 1 and 23: added RoHS compliance statement and Green product feature
		Page 1 and 23: Package changed to RoHS compliant version
		Page 24-25: added Revision History, updated Legal Disclaimer

Edition 2008-01-04

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.