: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Uni- and Bipolar Hall IC Switches for Magnetic Field Applications

TLE4905L, TLE4935L, TLE4945L, TLE4945-2L

Edition 2007-11

published by Infineon Technologies AG, Am Campeon 1-12, 81726 München, Germany
(C) Infineon Technologies AG 2007.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Uni- and Bipolar Hall IC Switches for Magnetic Field Applications

Features

- Digital output signal
- For unipolar and alternating magnetic fields
- Large temperature range
- Temperature compensated magnetic performance
- Protection against reversed polarity
- Output protection against electrical disturbances

Type	Marking	Package
TLE4905L	05 L	PG-SSO-3-2
TLE4935L	35 L	PG-SSO-3-2
TLE4935-2L	352	PG-SSO-3-2
TLE4945L	45 L	PG-SSO-3-2
TLE4945-2L	452	PG-SSO-3-2

TLE4905/35/45/45-2 L (Unipolar/Bipolar Magnetic Field Switches) have been designed specifically for automotive and industrial applications. Reverse polarity protection is included onchip as is output protection against negative voltage transients.
Typical applications are position/proximity indicators, brushless DC motor commutation, rotational indexing etc.

Pin Configuration

(view on branded side of component)

Figure 1

Pin Definitions and Functions

Pin No.	Symbol	Function
1	V_{S}	Supply voltage
2	GND	Ground
3	Q	Output

Circuit Description

The circuit includes Hall generator, amplifier and Schmitt-Trigger on one chip. The internal reference provides the supply voltage for the components. A magnetic field perpendicular to the chip surface induces a voltage at the hall probe. This voltage is amplified and switches a Schmitttrigger with open-collector output. A protection diode against reverse power supply is integrated. The output is protected against electrical disturbances.

Figure 2 Block Diagram

Functional Description Unipolar Type TLE4905 (Figure 3 and 4)

When a positive magnetic field is applied in the indicated direction (Figure 3) and the turn-on magnetic induction B_{OP} is exceeded, the output of the Hall-effect IC will conduct (Operate Point). When the current is reduced, the output of the IC turns off (Release Point; Figure 4).

Figure 3 Sensor/Magnetic-Field Configuration

Figure 4 Switching Characteristics Unipolar Type

Functional Description Bipolar Type TLE4935/45/45-2 (Figure 5 and 6)

When a positive magnetic field is applied in the indicated direction (Figure 5) and the turn-on magnetic induction B_{OP} is exceeded, the output of the Hall-effect IC will conduct (Operate Point). The output state does not change unless a reverse magnetic field exceeding the turn-off magnetic iinduction B_{RP} is exceeded. In this case the output will turn off (Release Point; Figure 6).

Figure 5 Sensor/Magnetic-Field Configuration

Figure 6 Switching Characteristics Bipolar Type

TLE4905L, TLE4935L, TLE4945L, TLE4945-2L

Absolute Maximum Ratings

$T_{\mathrm{j}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{S}	-40	32	V	-
Supply voltage	V_{S}	-	40	V	$t<400 \mathrm{~ms} ; \mathrm{v}=0.1$
Output voltage	V_{Q}	-	32	V	-
Output current	I_{Q}	-	100	mA	-
Output reverse current	$-I_{\mathrm{Q}}$	-	100	mA	-
Junction temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	-
Junction temperature	T_{j}	-	170	${ }^{\circ} \mathrm{C}$	1000 h
Junction temperature	T_{j}	-	210	${ }^{\circ} \mathrm{C}$	40 h
Storage temperature	$T_{\text {stg }}$	-50	150	${ }^{\circ} \mathrm{C}$	-
Thermal resistance	$R_{\mathrm{th} \mathrm{JA}}$	-	190	$\mathrm{~K} / \mathrm{W}$	-

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{S}	3.8	24	V	-
Junction temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	-
		-	170		1000 h, thresholds may exceed the limits

Note: In the operating range the functions given in the circuit description are fulfilled.

AC/DC Characteristics

$3.8 \mathrm{~V} \leq V_{\mathrm{S}} \leq 24 \mathrm{~V} ;-40^{\circ} \mathrm{C} \leq T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	$\begin{array}{l}\text { Test } \\ \text { Circuit }\end{array}$
		min.	typ.	max.			1
Supply current	$I_{\text {SHigh }}$	-	3	7	mA	$\begin{array}{l}\mathrm{B}<B_{\mathrm{RP}} \\ I_{\text {SLow }}\end{array}$	-
$\mathrm{B}>B_{\mathrm{OP}}$							

Note: Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$ and the given supply voltage.

Magnetic Characteristics

$3.8 \mathrm{~V} \leq V_{\mathrm{S}} \leq 24 \mathrm{~V}$

Parameter	Symbol	Limit Values								Unit
		TLE4905 unipolar		TLE4935 bipolar latch		TLE4945 bipolar switch		TLE4945-2 bipolar switch		
		min.	max.	min.	max.	min.	max.	min.	max.	

Junction Temperature $\boldsymbol{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C}$

Turn-ON induction	$B_{\text {OP }}$	7.5	19	10	20	-6	10	-3	6	mT
Turn-OFF induction	B_{RP}	5.5	17	-20	- 10	-10	6	-6	3	mT
Hysteresis $\left(B_{\mathrm{OP}}-B_{\mathrm{RP}}\right)$	ΔB_{H}	2	6.5	20	40	2	10	1	5	mT

Junction Temperature $\boldsymbol{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Turn-ON induction	$B_{\text {OP }}$	7	18	10	20	-6	10	-3	6	mT
Turn-OFF induction	B_{RP}	5	16	-20	- 10	- 10	6	-6	3	mT
Hysteresis $\left(B_{\mathrm{OP}}-B_{\mathrm{RP}}\right)$	ΔB_{H}	2	6	20	40	2	10	1	5	mT

Junction Temperature $T_{\mathrm{j}}=85^{\circ} \mathrm{C}$

Turn-ON		6.5	17.5	10	20	-6	10	-3	6	mT
induction Turn-OFF	B_{OP}									
induction	B_{RP}	4.5	15	-20	-10	-10	6	-6	3	mT
Hysteresis $\left(B_{\mathrm{OP}}-B_{\mathrm{RP}}\right)$	ΔB_{H}	2	5.5	20	40	2	10	1	5	mT

Magnetic Characteristics (cont'd)

$3.8 \mathrm{~V} \leq V_{\mathrm{S}} \leq 24 \mathrm{~V}$

Parameter	Symbol	Limit Values						Unit		
		TLE4905 unipolar	TLE4935 bipolar latch	TLE4945 bipolar switch	TLE4945-2 bipolar switch					
			min.	max.	min.	max.	min.	max.	min.	max.
:---										

Junction Temperature $\boldsymbol{T}_{\mathbf{j}}=150{ }^{\circ} \mathbf{C}$										
Turn-ON	B_{OP}	6	17	10	20	-6	10	-3	6	mT
induction Turn-OFF	B_{RP}	4	14	-20	-10	-10	6	-6	3	mT
induction Hysteresis $\left(B_{\mathrm{OP}}-B_{\mathrm{RP}}\right)$	ΔB_{H}	2	5	20	40	2	10	1	5	mT

Note: The listed magnetic characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{j}=25^{\circ} \mathrm{C}$ and the given supply voltage.

Unipolar Type TLE4905

Bipolar Type TLE4935

Figure 7 Test Circuit 1

Figure 8 Application Circuit

If not otherwise specified, all curves reflect typical values at $\boldsymbol{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ and $V_{\mathrm{S}}=\mathbf{1 2} \mathrm{V}$

Quiescent Current versus Supply Voltage

Quiescent Current Difference versus Temperature

Quiescent Current versus

Junction Temperature

Saturation Voltage versus
Output Current

TLE4905 Operate-and Release-Point versus Junction Temperature

TLE4935 Operate-and Release-Point versus Junction Temperature

TLE4905 Hysteresis versus Junction Temperature

TLE4945 Operate-and Release-Point versus Junction Temperature

TLE4945-2 Operate-and Release-Point versus Junction Temperature

Package Outlines

Revision History: 2007-11, V1.5
Previous Version: V1.4:§

Page	Subjects (major changes since last revision)
	Package changed to PG-SSO-3-2

For questions on technology, delivery and prices please contact the Infineon Technologies offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com

[^0]w w w. infineon.com

Published by Infineon Technologies AG

[^0]: We Listen to Your Comments
 Any information within this document that you feel is wrong, unclear or missing at all?
 Your feedback will help us to continuously improve the quality of this document.
 Please send your proposal (including a reference to this document) to:
 sensors@infineon.com

