imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Angle Sensor

GMR-Based Angle Sensor

TLE5012B

Data Sheet

Rev. 2.0, 2014-02

Sense & Control

Revision History						
Page or Item	Subjects (major changes since previous revision)					
Rev. 2.0, 2014-02						
	All chapters revised					

Trademarks of Infineon Technologies AG

AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], EconoPACK[™], CoolMOS[™], CoolSET[™], CORECONTROL[™], CROSSAVE[™], DAVE[™], DI-POL[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPIM[™], EconoPACK[™], EiceDRIVER[™], eupec[™], FCOS[™], HITFET[™], HybridPACK[™], I²RF[™], ISOFACE[™], IsoPACK[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OptiMOS[™], ORIGA[™], POWERCODE[™]; PRIMARION[™], PrimePACK[™], PrimeSTACK[™], PRO-SIL[™], PROFET[™], RASIC[™], ReverSave[™], SatRIC[™], SIEGET[™], SINDRION[™], SIPMOS[™], SmartLEWIS[™], SOLID FLASH[™], TEMPFET[™], thinQ![™], TRENCHSTOP[™], TriCore[™].

Other Trademarks

Advance Design System[™] (ADS) of Agilent Technologies, AMBA[™], ARM[™], MULTI-ICE[™], KEIL[™], PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-ig™ of DECT Forum. COLOSSUS™, FirstGPS[™] of Trimble Navigation Ltd. EMV[™] of EMVCo, LLC (Visa Holdings Inc.). EPCOS[™] of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC[™] of Commission Electrotechnique Internationale. IrDA[™] of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

Table of Contents

Table of Contents

	Table of Contents	. 4
	List of Figures	. 6
	List of Tables	. 7
1	Product Description	g
11	Overview	. 0 . 8
1.2	Features	. 9
1.3	Application Example	. 9
2	Functional Description	10
2.1	Block Diagram	10
2.2	Functional Block Description	10
2.2.1	Internal Power Supply	10
2.2.2	Oscillator and PLL	10
2.2.3	SD-ADC	11
2.2.4	Digital Signal Processing Unit	11
2.2.5	Interfaces	11
2.2.6	Safety Features	11
2.3	Sensing Principle	12
2.4	Pin Configuration	14
2.5	Pin Description	14
3	Application Circuits	15
4	Specification	19
4.1	Absolute Maximum Ratings	19
4.2	Operating Range	19
4.3	Characteristics	21
4.3.1	Input/Output characteristics	21
4.3.2	ESD Protection	23
4.3.3	GMR Parameters	23
4.3.4	Angle Performance	24
4.3.5		25
4.3.6		26
4.3.7		28
4.4		29
4.4.1		29
4.4.1.1	SSC Data Transfer	29
4.4.1.2	Pulse Width Modulation (PW/M) Interface	3/
443	Short PWM Code (SPC)	36
4431	Unit Time Setup	37
4.4.3.2	Master Trigger Pulse Requirements	38
4.4.3.3	Checksum Nibble Details	38
4.4.4	Hall Switch Mode (HSM)	39
4.4.5	Incremental Interface (IIF)	42
4.5		43
4.5.1	ADC Test Vectors	43
4.6	Supply Monitoring	44
4.6.1	Internal Supply Voltage Comparators	45

Table of Contents

4.6.2 4.6.3 4.6.4	V _{DD} Overvoltage Detection	45 45 45
5	Pre-Configured Derivates	46
5.1	IIF-type: E1000	46
5.2	HSM-type: E3005	46
5.3	PWM-type: E5000	46
5.4	PWM-type: E5020	46
5.5	SPC-type: E9000	46
6	Package Information	47
6.1	Package Parameters	47
6.2	Package Outline	47
6.3	Footprint	48
6.4	Packing	49
6.5	Marking	49

List of Figures

List of Figures

Figure 1-1	PG-DSO-8 package	. 8
Figure 2-1	TLE5012B block diagram	10
Figure 2-2	Sensitive bridges of the GMR sensor (not to scale)	12
Figure 2-3	Ideal output of the GMR sensor bridges	13
Figure 2-4	Pin configuration (top view)	14
Figure 3-1	Application circuit for TLE5012B with IIF interface and SSC (using internal CLK)	15
Figure 3-2	Application circuit for TLE5012B with HS Mode and SSC (using internal CLK)	15
Figure 3-3	Application circuit for TLE5012B with only PWM interface (using internal CLK)	16
Figure 3-4	Application circuit for TLE5012B with only PWM interface (using internal CLK)	16
Figure 3-5	Application circuit for TLE5012B with only SPC interface (using internal CLK)	17
Figure 3-6	SSC configuration in sensor-slave mode with push-pull outputs (high-speed application)	17
Figure 3-7	SSC configuration in sensor-slave mode and open-drain (bus systems)	18
Figure 4-1	Allowed magnetic field range as function of junction temperature	20
Figure 4-2	Offset and amplitude definition	23
Figure 4-3	Additional angle error for temperature changes above 5 Kelvin within 1.5 revolutions	25
Figure 4-4	Signal path	26
Figure 4-5	Delay of sensor output	26
Figure 4-6	External CLK timing definition.	28
Figure 4-7	SSC timing	29
Figure 4-8	SSC data transfer (data-read example)	31
Figure 4-9	SSC data transfer (data-write example)	31
Figure 4-10	SSC bit ordering (read example)	33
Figure 4-11	Update of update registers	33
Figure 4-12	Fast CRC polynomial division circuit	34
Figure 4-13	Typical example of a PWM signal.	35
Figure 4-14	SPC frame example	36
Figure 4-15	SPC pause timing diagram	36
Figure 4-16	SPC Master pulse timing	38
Figure 4-17	Hall Switch Mode	39
Figure 4-18	HS hysteresis	42
Figure 4-19	Incremental interface with A/B mode	42
Figure 4-20	Incremental interface with Step/Direction mode	43
Figure 4-21	ADC test vectors.	44
Figure 4-22	Overvoltage comparator	45
Figure 4-23	GND - off comparator	45
Figure 4-24	V _{DD} - off comparator	45
Figure 6-1	PG-DSO-8 package dimension	47
Figure 6-2	Position of sensing element	48
Figure 6-3	Footprint of PG-DSO-8	48
Figure 6-4	Tape and Reel	49

List of Tables

List of Tables

Derivate Ordering codes.	8
Pin Description	14
Absolute maximum ratings	19
Operating range and parameters	19
Input voltage and output currents	21
Driver strength characteristic	21
Electrical parameters for 4.5 V < V _{DD} < 5.5 V	22
Electrical parameters for 3.0 V < V _{DD} < 3.6 V	22
ESD protection	23
Basic GMR parameters	23
Angle performance	24
Signal processing	27
Internal clock timing specification	28
External Clock Specification	28
SSC push-pull timing specification	29
SSC open-drain timing specification	30
Structure of the Command Word	31
Structure of the Safety Word	32
Bit Types	32
PWM interface	35
Frame configuration	37
Structure of status nibble	37
Predivider setting	37
Master pulse parameters	38
Hall Switch Mode	39
	43
ADC test vectors	43
Test comparator threshold voltages	44
Package Parameters	47
Sensor IC placement tolerances in package	48
	Derivate Ordering codes. Pin Description . Absolute maximum ratings Operating range and parameters . Input voltage and output currents Driver strength characteristic . Electrical parameters for 4.5 V < V _{DD} < 5.5 V Electrical parameters for 3.0 V < V _{DD} < 3.6 V ESD protection . Basic GMR parameters . Angle performance . Signal processing . Internal clock timing specification . SXC push-pull timing specification . SXC open-drain timing specification . Structure of the Command Word . Structure of the Safety Word . Bit Types . PWM interface . Frame configuration . Structure of status nibble . Predivider setting . Master pulse parameters . Hall Switch Mode . Incremental Interface . Frast vectors . Fast comparator threshold voltages . Package Parameters . Sensor IC placement tolerances in package .

Product Description

1 **Product Description**

Figure 1-1 PG-DSO-8 package

1.1 Overview

The TLE5012B is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR) elements. These raw signals (sine and cosine) are digitally processed internally to calculate the angle orientation of the magnetic field (magnet).

The TLE5012B is a pre-calibrated sensor. The calibration parameters are stored in laser fuses. At start-up the values of the fuses are written into flip-flops, where these values can be changed by the application-specific parameters. Further precision of the angle measurement over a wide temperature range and a long lifetime can be improved by enabling an optional internal autocalibration algorithm.

Data communications are accomplished with a bi-directional Synchronous Serial Communication (SSC) that is SPI-compatible. The sensor configuration is stored in registers, which are accessible by the SSC interface.

Additionally four other interfaces are available with the TLE5012B: Pulse-Width-Modulation (PWM) Protocol, Short-PWM-Code (SPC) Protocol, Hall Switch Mode (HSM) and Incremental Interface (IIF). These interfaces can be used in parallel with SSC or alone. Pre-configured sensor derivates with different interface settings are available (see Table 1-1 and Chapter 5)

Online diagnostic functions are provided to ensure reliable operation.

Table 1-1	Derivate	Ordering	codes
-----------	----------	----------	-------

-									
Product Type	Marking	Ordering Code	Package						
TLE5012B E1000	012B1000	SP001166960	PG-DSO-8						
TLE5012B E3005	012B3005	SP001166964	PG-DSO-8						
TLE5012B E5000	012B5000	SP001166968	PG-DSO-8						
TLE5012B E5020	012B5020	SP001166972	PG-DSO-8						
TLE5012B E9000	012B9000	SP001166998	PG-DSO-8						

Note: See Chapter 5 for description of derivates.

Product Description

1.2 Features

- Giant Magneto Resistance (GMR)-based principle
- Integrated magnetic field sensing for angle measurement
- 360° angle measurement with revolution counter and angle speed measurement
- Two separate highly accurate single bit SD-ADC
- 15 bit representation of absolute angle value on the output (resolution of 0.01°)
- 16 bit representation of sine / cosine values on the interface
- Max. 1.0° angle error over lifetime and temperature-range with activated auto-calibration
- Bi-directional SSC Interface up to 8Mbit/s
- Supports Safety Integrity Level (SIL) with diagnostic functions and status information
- Interfaces: SSC, PWM, Incremental Interface (IIF), Hall Switch Mode (HSM), Short PWM Code (SPC, based on SENT protocol defined in SAE J2716)
- Output pins can be configured (programmed or pre-configured) as push-pull or open-drain
- Bus mode operation of multiple sensors on one line is possible with SSC or SPC interface in open-drain configuration
- 0.25 μm CMOS technology
- Automotive qualified: -40°C to 150°C (junction temperature)
- ESD > 4kV (HBM)
- RoHS compliant (Pb-free package)
- Halogen-free

1.3 Application Example

The TLE5012B GMR-based angle sensor is designed for angular position sensing in automotive applications such as:

- Electrical commutated motor (e.g. used in Electric Power Steering (EPS))
- Rotary switches
- Steering angle measurements
- General angular sensing

2 Functional Description

2.1 Block Diagram

Figure 2-1 TLE5012B block diagram

2.2 Functional Block Description

2.2.1 Internal Power Supply

The internal stages of the TLE5012B are supplied with several voltage regulators:

- GMR Voltage Regulator, VRG
- Analog Voltage Regulator, VRA
- Digital Voltage Regulator, VRD (derived from VRA)

These regulators are directly connected to the supply voltage V_{DD} .

2.2.2 Oscillator and PLL

The digital clock of the TLE5012B is given by the Phase-Locked Loop (PLL), which is by default fed by an internal oscillator. In order to synchronize the TLE5012B with other ICs in a system, the TLE5012B can be configured via

SSC interface to use an external clock signal supplied on the IFC pin as source for the PLL, instead of the internal clock. External clock mode is only available in PWM or SPC interface configuration.

2.2.3 SD-ADC

The Sigma-Delta Analog-Digital-Converters (SD-ADC) transform the analog GMR voltages and temperature voltage into the digital domain.

2.2.4 Digital Signal Processing Unit

The Digital Signal Processing Unit (DSPU) contains the:

- Intelligent State Machine (ISM), which does error compensation of offset, offset temperature drift, amplitude synchronicity and orthogonality of the raw signals from the GMR bridges, and performs additional features such as auto-calibration, prediction and angle speed calculation
- COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle calculation
- Capture Compare Unit (CCU), which is used to generate the PWM and SPC signals
- Random Access Memory (RAM), which contains the configuration registers
- Laser Fuses, which contain the calibration parameters for the error-compensation and the IC default configuration, which is loaded into the RAM at startup

2.2.5 Interfaces

Bi-directional communication with the TLE5012B is enabled by a three-wire SSC interface. In parallel to the SSC interface, one secondary interface can be selected, which is available on the IFA, IFB, IFC pins:

- PWM
- Incremental Interface
- Hall Switch Mode
- Short PWM Code

By using pre-configured derivates (see **Chapter 5**), the TLE5012B can also be operated with the secondary interface only, without SSC communication.

2.2.6 Safety Features

The TLE5012B offers a multiplicity of safety features to support the Safety Integrity Level (SIL) and it is a PRO-SIL[™] product.

Safety features are:

- Test vectors switchable to ADC input (activated via SSC interface)
- Inversion or combination of filter input streams (activated via SSC interface)
- Data transmission check via 8-bit Cyclic Redundancy Check (CRC) for SSC communcation and 4-bit CRC nibble for SPC interface
- Built-in Self-test (BIST) routines for ISM, CORDIC, CCU, ADCs run at startup
- Two independent active interfaces possible
- Overvoltage and undervoltage detection

Disclaimer

PRO-SIL[™] is a Registered Trademark of Infineon Technologies AG.

The PRO-SIL[™] Trademark designates Infineon products which contain SIL Supporting Features.

SIL Supporting Features are intended to support the overall System Design to reach the desired SIL (according to IEC61508) or A-SIL (according to ISO26262) level for the Safety System with high efficiency.

SIL respectively A-SIL certification for such a System has to be reached on system level by the System Responsible at an accredited Certification Authority.

SIL stands for Safety Integrity Level (according to IEC 61508)

A-SIL stands for Automotive-Safety Integrity Level (according to ISO 26262)

2.3 Sensing Principle

The Giant Magneto Resistance (GMR) sensor is implemented using vertical integration. This means that the GMR-sensitive areas are integrated above the logic part of the TLE5012B device. These GMR elements change their resistance depending on the direction of the magnetic field.

Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense one of two components of the applied magnetic field:

- X component, V_x (cosine) or the
- Y component, V_v (sine)

With this full-bridge structure the maximum GMR signal is available and temperature effects cancel out each other.

Figure 2-2 Sensitive bridges of the GMR sensor (not to scale)

Attention: Due to the rotational placement inaccuracy of the sensor IC in the package, the sensors 0° position may deviate by up to 3° from the package edge direction indicated in Figure 2-2.

In **Figure 2-2**, the arrows in the resistors represent the magnetic direction which is fixed in the reference layer. If the external magnetic field is parallel to the direction of the Reference Layer, the resistance is minimal. If they are anti-parallel, resistance is maximal.

The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are oriented orthogonally to each other to measure 360°.

With the trigonometric function ARCTAN2, the true 360° angle value is calculated out of the raw X and Y signals from the sensor bridges.

TLE5012B

Functional Description

Figure 2-3 Ideal output of the GMR sensor bridges

2.4 Pin Configuration

Figure 2-4 Pin configuration (top view)

2.5 Pin Description

Table 2-1Pin Description

Pin No.	Symbol	In/Out	Function
1	IFC (CLK / IIF_IDX / HS3)	I/O	Interface C: External Clock ¹⁾ / IIF Index / Hall Switch Signal 3
2	SCK	I	SSC Clock
3	CSQ	I	SSC Chip Select
4	DATA	I/O	SSC Data
5	IFA (IIF_A / HS1 / PWM / SPC)	I/O	Interface A: IIF Phase A / Hall Switch Signal 1 / PWM / SPC output (input for SPC trigger only)
6	V _{DD}	-	Supply Voltage
7	GND	-	Ground
8	IFB (IIF_B / HS2)	0	Interface B: IIF Phase B / Hall Switch Signal 2

1) External clock feature is not available in IIF or HSM interface mode

3 Application Circuits

The application circuits in this chapter show the various communication possibilities of the TLE5012B. The pin output mode configuration is device-specific and it can be either push-pull or open-drain. The bit IFAB_OD (register IFAB, $0D_H$) indicates the output mode for the IFA, IFB and IFC pins. The SSC pins are by default push-pull (bit SSC_OD, register MOD_3, 09_H).

Figure 3-1 shows a basic block diagram of a TLE5012B with Incremental Interface and SSC configuration. The derivate TLE5012B - E1000 is by default configured with push-pull IFA (IIF_A), IFB (IIF_B) and IFC (IIF_IDX) pins.

Figure 3-1 Application circuit for TLE5012B with IIF interface and SSC (using internal CLK)

In case that the IFA, IFB and IFC pins are configurated via the SSC interface as open-drain pins, three resistors (one for each line) between output line and V_{DD} would be recommended (e.g. 2.2k Ω).

Figure 3-2 shows a basic block diagram of the TLE5012B with HS Mode and SSC configuration. The derivate TLE5012B - E3005 is by default configurated with push-pull IFA (HS1), IFB (HS2) and IFC (HS3) pins.

Figure 3-2 Application circuit for TLE5012B with HS Mode and SSC (using internal CLK)

Application Circuits

In case that the IFA, IFB and IFC pins are configurated via the SSC interface as open drain pins, three resistors (one for each line) between the output line and V_{DD} would be recommended (e.g. $2.2k\Omega$).

The TLE5012B can be configured with PWM only (**Figure 3-3**). The derivate TLE5012B - E5000 is by default configurated with push-pull IFA (PWM) pin. Therefore the following configuration is recommended:

Figure 3-3 Application circuit for TLE5012B with only PWM interface (using internal CLK)

The TLE5012B - E5020 is also a PWM derivate but with open drain IFA (PWM) pin. A pull-up resistor (e.g. $2.2k\Omega$) should then be added between the IFA line and VDD, as shown in **Figure 3-4**.

Figure 3-4 Application circuit for TLE5012B with only PWM interface (using internal CLK)

For safety reasons it is better that the non-used pins are connected to ground, rather than floating. A resistor between he DATA line pin and ground is recommended to avoid shortcuts if DATA generates any unexpected output. The CSQ line has to be connected to V_{DD} to avoid unintentional activation of the SSC interface.

TLE5012B

Application Circuits

The TLE5012B can be configured with SPC only (**Figure 3-5**). This is only possible with the TLE5012B - E9000 derivate, which is by default configurated with an open-drain IFA (SPC) pin.

Figure 3-5 Application circuit for TLE5012B with only SPC interface (using internal CLK)

In **Figure 3-5** the IFC (S_NR[1]) and SCK (S_NR[0]) pins are set to ground to generate the slave number (S_NR) 0_D (or 00_B). For safety reasons it is better that the non-used pins are connected to ground, rather than floating. A resistor between the DATA line pin and ground is recommended to avoid shortcuts if DATA generates any unexpected output. The CSQ line has to be connected to V_{DD} to avoid unintentional activation of the SSC interface.

Synchronous Serial Communication (SSC) configuration

In **Figure 3-1** and **Figure 3-2** the SSC interface has the default push-pull configuration (see details in **Figure 3-6**). Series resistors on the DATA, SCK (serial clock signal) and CSQ (chip select) lines are recommended to limit the current in the erroneous case that either the sensor pushes high and the microcontroller pulls low at the same time or vice versa. The resistors in the SCK and CSQ lines are only necessary in case of disturbances or noise.

Figure 3-6 SSC configuration in sensor-slave mode with push-pull outputs (high-speed application)

Application Circuits

It is also possible to use an open-drain setup for the DATA, SCK and CSQ lines. This setup is designed to communicate with a microcontroller in a bus system, together with other SSC slaves (e.g. two TLE5012B devices for redundancy reasons). This mode can be activated using the bit SSC_OD.

The open-drain configuration can be seen in **Figure 3-7**. Series resistors on the DATA, SCK, and CSQ lines are recommended to limit the current in case either the microcontroller or the sensor are accidentally switched to pushpull. A pull-up resistor of typ. 1 k Ω is required on the DATA line.

Figure 3-7 SSC configuration in sensor-slave mode and open-drain (bus systems)

TLE5012B

4 Specification

4.1 Absolute Maximum Ratings

Table 4-1 Absolute maximum ratings

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Voltage on V_{DD} pin with respect to ground (V_{SS})	V _{DD}	-0.5		6.5	V	Max 40 h/Lifetime
Voltage on any pin with respect to	V _{IN}	-0.5		6.5	V	
ground (V _{SS})				V _{DD} +	V	
				0.5		
Junction temperature	TJ	-40		150	°C	
				150	°C	For 1000 h, not additive
Magnetic field induction	В			200	mT	Max. 5 min @ T _A = 25°C
				150	mT	Max. 5 h @ T _A = 25°C
Storage temperature	T _{ST}	-40		150	°C	Without magnetic field

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device.

4.2 Operating Range

The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5012B. All parameters specified in the following sections refer to these operating conditions, unless otherwise noted. Table 4-2 is valid for $-40^{\circ}C < T_J < 150^{\circ}C$ unless otherwise noted.

Table 4-2	Operating I	range and	parameters
-----------	-------------	-----------	------------

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	V _{DD}	3.0	5.0	5.5	V	1)
Supply current	I _{DD}		14	16	mA	
Magnetic induction at $T_J =$	B _{XY}	30		50	mT	-40°C < T _J < 150°C
$25^{\circ}C^{2(3)}$		30		60	mT	-40°C < T _J < 100°C
		30		70	mT	-40°C < T _J < 85°C
Extended magnetic induction range at $T_J = 25^{\circ}C^{2)3)}$	B _{XY}	25		30	mΤ	Additional angle error of 0.1°
Angle range	Ang	0		360	0	
POR level	V _{POR}	2.0		2.9	V	Power-on reset
POR hysteresis	V _{PORhy}		30		mV	

Specification

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power-on time ⁴⁾	t _{Pon}		5	7	ms	V _{DD} > V _{DDmin} ;
Fast Reset time ⁵⁾	t _{Rfast}			0.5	ms	Fast reset is triggered by disabling startup BIST (S_BIST = 0), then enabling chip reset (AS_RST = 1)

Table 4-2 Operating range (cont'd) and parameters

1) Directly blocked with 100-nF ceramic capacitor

2) Values refer to a homogeneous magnetic field (B_{XY}) without vertical magnetic induction ($B_z = 0mT$).

4) During "Power-on time," write access is not permitted (except for the switch to External Clock which requires a readout as a confirmation that external clock is selected)

5) Not subject to production test - verified by design/characterization

The field strength of a magnet can be selected within the colored area of **Figure 4-1**. By limitation of the junction temperature, a higher magnetic field can be applied. In case of a maximum temperature T_J =100°C, a magnet with up to 60mT at T_J = 25°C is allowed.

It is also possible to widen the magnetic field range for higher temperatures. In that case, additional angle errors have to be considered.

Figure 4-1 Allowed magnetic field range as function of junction temperature.

³⁾ See Figure 4-1

4.3 Characteristics

4.3.1 Input/Output characteristics

The indicated parameters apply to the full operating range, unless otherwise specified. The typical values correspond to a supply voltage V_{DD} = 5.0 V and 25 °C, unless individually specified. All other values correspond to -40 °C < T_J < 150°C.

Within the register MOD_3, the driver strength and the slope for push-pull communication can be varied depending on the sensor output. The driver strength is specified in **Table 4-3** and the slope fall and rise time in **Table 4-4**.

Table 4-3	Input voltage	and output	currents
	mput vonage	and output	. currents

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Input voltage	V _{IN}	-0.3		5.5	V	
				V _{DD} + 0.3	V	
Output current (DATA-Pad)	I _Q			-25	mA	PAD_DRV ='0x', sink current ¹⁾²⁾
				-5	mA	PAD_DRV ='10', sink current ¹⁾²⁾
				-0.4	mA	PAD_DRV ='11', sink current ¹⁾²⁾
Output current (IFA / IFB / IFC	I _Q			-15	mA	PAD_DRV ='0x', sink current ¹⁾²⁾
Pad)				-5	mA	PAD_DRV ='1x', sink current ¹⁾²⁾

1) Max. current to GND over open-drain output

2) At V_{DD} = 5 V

Table 4-4 Driver strength characteristic

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Output rise/fall time	t_{fall}, t_{rise}			8	ns	DATA, 50 pF, PAD_DRV='00' ¹⁾²⁾
				28	ns	DATA, 50 pF, PAD_DRV='01' ¹⁾²⁾
				45	ns	DATA, 50 pF, PAD_DRV='10' ¹⁾²⁾
				130	ns	DATA, 50 pF, PAD_DRV='11' ¹⁾²⁾
				15	ns	IFA/IFB, 20 pF, PAD_DRV='0x' ¹⁾²⁾
				30	ns	IFA/IFB, 20 pF, PAD_DRV='1x' ¹⁾²⁾

1) Valid for push-pull output

2) Not subject to production test - verified by design/characterization

Specification

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Input signal low-level	V _{L5}			0.3 V _{DD}	V		
Input signal high level	V _{H5}	0.7 V _{DD}			V		
Output signal low-level	V _{OL5}			1	V	DATA; $I_Q = -25 \text{ mA} (PAD_DRV='0x')$, $I_Q = -5 \text{ mA} (PAD_DRV='10')$, $I_Q = -0.4 \text{ mA} (PAD_DRV='11')$	
				1	V	IFA,B,C; I_Q = -15 mA (PAD_DRV='0x'), I_Q = -5 mA (PAD_DRV='1x')	
Pull-up current ¹⁾	I _{PU}	-10		-225	μA	CSQ	
		-10		-150	μA	DATA	
Pull-down current ²⁾	I _{PD}	10		225	μA	SCK	
		10		150	μA	IFA, IFB, IFC	

Table 4-5Electrical parameters for $4.5 V < V_{DD} < 5.5 V$

1) Internal pull-ups on CSQ and DATA pin are always enabled.

2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on SCK is always enabled.

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Input signal low-level	V _{L3}			0.3 V _{DD}	V		
Input signal high level	V _{H3}	0.7 V _{DD}			V		
Output signal low-level	V _{OL3}			0.9	V	DATA; I _Q = -15 mA (PAD_DRV='0x'), I _Q = -3 mA (PAD_DRV='10'), I _Q = -0.24 mA (PAD_DRV='11')	
				0.9	V	IFA,IFB; $I_Q = -10 \text{ mA}$ (PAD_DRV='0x'), $I_Q = -3 \text{ mA}$ (PAD_DRV='1x')	
Pull-up current ¹⁾	I _{PU}	-3		-225	μA	CSQ	
		-3		-150	μA	DATA	
Pull-down current ²⁾	I _{PD}	3		225	μA	SCK	
		3		150	μA	IFA, IFB, IFC	

Table 4-6Electrical parameters for 3.0 V < V_{DD} < 3.6 V</th>

1) Internal pull-ups on CSQ and DATA pin are always enabled.

2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on SCK is always enabled.

Specification

4.3.2 ESD Protection

Table 4-7 ESD protection

Parameter	Symbol	Valu	les	Unit	Notes	
		Min.	Max.			
ESD voltage	V _{HBM}		±4.0	kV	Human Body Model ¹⁾	
	V _{SDM}		±0.5	kV	Socketed Device Model ²⁾	

1) Human Body Model (HBM) according to: AEC-Q100-002

2) Socketed Device Model (SDM) according to: ESDA/ANSI/ESD SP5.3.2-2008

4.3.3 GMR Parameters

All parameters apply over B_{XY} = 30mT and T_A = 25°C, unless otherwise specified.

Table 4-8 Basic GMR parameters

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
X, Y output range	RG _{ADC}			±23230	digits	Operating range ¹⁾
X, Y amplitude ²⁾	A _X , A _Y	6000	9500	15781	digits	At ambient temperature
		3922		20620	digits	Operating range
X, Y synchronicity ³⁾	k	87.5	100	112.49	%	
X, Y offset ⁴⁾	O _X , O _Y	-2048	0	+2047	digits	
X, Y orthogonality error	φ	-11.25	0	+11.24	0	
X, Y amplitude without magnet	X ₀ , Y ₀			+4096	digits	Operating range ¹⁾

1) Not subject to production test - verified by design/characterization

2) See Figure 4-2

3) $k = 100^*(A_X/A_Y)$

4) $O_{Y}=(Y_{MAX} + Y_{MIN}) / 2; O_{X} = (X_{MAX} + X_{MIN}) / 2$

Figure 4-2 Offset and amplitude definition

4.3.4 Angle Performance

After internal calculation, the sensor has a remaining error, as shown in **Table 4-9**. The error value refers to B_Z = 0mT and the operating conditions given in **Table 4-2** "**Operating range and parameters**" on **Page 19**.

The overall angle error represents the relative angle error. This error describes the deviation from the reference line after zero-angle definition. It is valid for a static magnetic field.

If the magnetic field is rotating during the measurement, an additional propagation error is caused by the angle delay time (see **Table 4-10 "Signal processing" on Page 27**), which the sensor needs to calculate the angle from the raw sine and cosine values from the MR bridges. In fast-turning applications, prediction can be enabled to reduce this propagation error.

Table 4-9Angle performance

Parameter	Symbol		Value	es	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Overall angle error (with auto- calibration)	α _{Err}		0.6 ¹⁾	1.0	0	Including lifetime and temperature drift ²⁾³⁾⁴⁾ . Note: in case of temperature changes above 5 Kelvin within 1.5 revolutions refer to Figure 4-3 for additional angle error.
Overall angle error (without auto- calibration)	α_{Err}		0.6 ¹⁾	1.3	0	Including temperature drift ²⁾³⁾⁵⁾
				1.9	0	Including lifetime and temperature drift ²⁾³⁾⁴⁾

1) At 25°C, B = 30mT

2) Including hysteresis error, caused by revolution direction change

3) Relative error after zero angle definition

4) Not subject to production test - verified by design/characterization

5) Oh

If autocalibration (see **Chapter 4.3.5**) is enabled and the temperature changes by more than 5 Kelvin during 1.5 revolutions an additional error has to be added to the specified angle error in **Table 4-9**. This error depends on the temperature change (Delta Temperature) as well as from the initial temperature (Tstart) as shown in **Figure 4-3**. Once the temperature stabilizes and the application completes 1.5 revolutions, then the angle error is as specified in **Table 4-9**.

For negative Delta Temperature changes (from higher to lower temperatures) the additional angle error will be smaller than the corresponding positive Delta Temperature changes (from lower to higher temperatures) shown in **Figure 4-3**. The **Figure 4-3** applies to the worst case.

Specification

Figure 4-3 Additional angle error for temperature changes above 5 Kelvin within 1.5 revolutions

4.3.5 Autocalibration

The autocalibration enables online parameter calculation and therefore reduces the angle error due to temperature and lifetime drifts.

The TLE5012B is a pre-calibrated sensor, so autocalibration is only enabled in some devices by default. The update mode can be chosen with the AUTOCAL setting in the MOD_2 register. The TLE5012B needs 1.5 revolutions to generate new autocalibration parameters. These parameters are continuously updated. The parameters are updated in a smooth way (one Least-Significant Bit within the chosen range or time) to avoid an angle jump on the output.

AUTOCAL Modes:

- 00: No autocalibration
- 01: Autocalibration Mode 1. One LSB to final values within the update time t_{upd} (depending on FIR_MD setting).
- 10: Autocalibration Mode 2. Only one LSB update over one full parameter generation (1.5 revolutions). After update of one LSB, the autocalibration will calculate the parameters again.
- 11: Autocalibration Mode 3. One LSB to final values within an angle range of 11.25°