

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TLE5014D

Preface

This document is an addendum to the TLE5014 datasheet and describes the TLE5014D dual die angle sensor. For all parameters which are not specified here, the TLE5014 datasheet is valid.

(i) Infineon

Features

- Giant Magneto Resistance (GMR)-based principle
- Two identical dies in one package (providing channel 1 and channel 2 output)
- Fully redundant 2-channel solution for highest functional safety requirements
- · High voltage and reverse polarity capability
- EEPROM for storage of configuration (e.g. zero angle) and customer specific ID
- 12 bit representation of absolute angle value on the output
- Max. 1° angle error over lifetime and temperature range
- Developed according to ISO26262 with process complying to ASIL-D
- Internal safety mechanisms with diagnostic coverage >97% for each channel
- Interfaces: PWM, SPC, SENT (based on SAE J2716-2010)
- 32 point look-up table to correct for systematic angle errors (e.g. magnetic circuit)
- 112 bit customer ID (programmable)
- Automotive qualified Q100, Grade 1: -40°C to 125°C (ambient temperature)

Functional Safety

Safety Manual and Safety Analysis Summary Report available on request

Applications

The TLE5014 GMR-based angle sensor is designed for angular position sensing in automotive applications. Fully redundancy of two chips in one package supporting highest functional safety requirements.

Description

Table 0-1 Derivative Ordering codes (see Chapter 4 for description of derivatives)

Product Type	Marking	Ordering Code	Package	Comment
TLE5014S16D	014SD	SP001410046	PG-TDSO-16	SENT Interface
TLE5014C16D	014CD	SP001410042	PG-TDSO-16	SPC Interface
TLE5014P16D	014PD	SP001673472	PG-TDSO-16	PWM Interface

TLE5014D

Table of Contents

1	Pin Configuration	. 3
1.1	Pin Description 3	
2	Dual Sensor Angle Output	. 4
3	Absolute Maximum Ratings	. 5
4	Pre-Configured Derivatives	. 6
4.1	TLE5014C16D 6	
4.2	TLE5014S16D 6	
4.3	TLE5014P16D 7	
5	Package Information	. 8
5.1	Package Parameters 8	
5.2	Package Outline 9	
5.3	Footprint 10	
5.4	Packing 10	
5.5	Marking 11	
6	Revision History	12

Pin Configuration

1 Pin Configuration

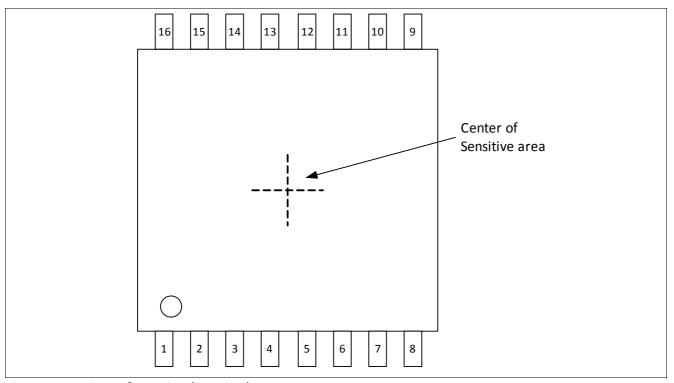


Figure 1-1 Pin configuration (top view)

1.1 Pin Description

The following table describes the pin-out of the chip. Pins 1-8 correspond to channel 1 of the sensor (top IC in the package). Pins 9-16 correspond to channel 2 (bottom IC in the package). The two sensors are galvanically decoupled.

Table 1-1 Pin Description

Pin No.	Symbol	In/Out	Function
1	IF1-1	I	address coding for programming in bus mode, channel 1 (see TLE5014 datasheet) connect to GND for SENT / PWM interface
2	IF2-1		address coding for programming in bus mode, channel 1 (see TLE5014 datasheet) connect to GND for SENT / PWM interface
3	IF3-1	1	connect to IFC
4	VDD-1	-	supply voltage, positive for channel 1
5	GND-1	-	supply voltage, ground for channel 1
6	IFA-1	-	connect to GND
7	IFB-1	I/O	SENT / SPC / PWM / SICI interface for channel 1
8	IFC-1	0	address coding for programming in bus mode, channel 1 (see TLE5014 datasheet) connect to IF3

Dual Sensor Angle Output

Table 1-1 Pin Description (cont'd)

Pin No.	Symbol	In/Out	Function
9	IFC-2	0	address coding for programming in bus mode, channel 2 (see TLE5014 datasheet) connect to IF3
10	IFB-2	I/O	SENT / SPC / PWM / SICI interface for channel 2
11	IFA-2	-	connect to GND
12	GND-2	-	supply voltage, ground for channel 2
13	VDD-2	-	supply voltage, positive for channel 2
14	IF3-2	1	connect to IFC
15	IF2-2	I	address coding for programming in bus mode, channel 2 (see TLE5014 datasheet) connect to GND for SENT / PWM interface
16	IF1-2	I	address coding for programming in bus mode, channel 2 (see TLE5014 datasheet) connect to GND for SENT / PWM interface

2 Dual Sensor Angle Output

The bottom sensor element of the Product_Short is flipped relative to the orientation of the top sensor element Therefore the rotation direction sensed by the bottom element is opposite to the top element. This is advantageous for safety critical applications, as the two sensor elements do generally not output the same angle. Figure 2-1 shows the output of the two sensor ICs for a given external magnetic field orientation.

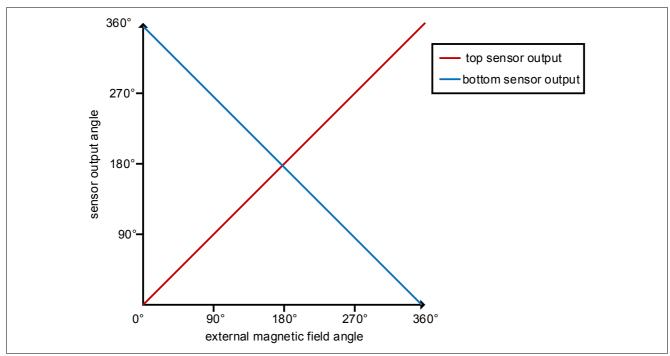


Figure 2-1 Dual die angle output

For applications where an identical angle output of both ICs is desired, the rotation direction and angle offset of one sensor IC can be reconfigured by changing the settings in the ANG_BASE register of the EEPROM.

Absolute Maximum Ratings

3 Absolute Maximum Ratings

Attention:

Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device.

Table 3-1 ESD protection

Parameter	Symbol	Symbol Values		Unit	Notes	
		Min.	Max.			
Electro-Static-Discharge voltage (HBM), according to	V _{HBM}		±4.0	kV	HBM contact discharge for pins VDD, GND, IFB; ground pins connected	
ANSI/ESDA/JEDEC JS-001	V _{HBM}		±2.0	kV	HBM contact discharge for all pins, ground pins not connected	
Electro-Static-Discharge	V_{CDM}		±0.5	kV	for all pins except corner pins	
voltage (CDM), according to JESD22-C101			±0.75	kV	for corner pins only	

Pre-Configured Derivatives

4 Pre-Configured Derivatives

Derivatives of the TLE5014D are available with different pre-configured register settings for specific application ("settings"). For each derivative with such settings, the interface type is locked and cannot be changed. Only the derivatives with such settings have been released for production by Infineon.

Other settings/parameters for other applications could be adjusted but such adjusted settings would not have been released for production by Infineon.

Furthermore, the available safety analysis and safety manual does only include these preconfigured derivatives.

4.1 TLE5014C16D

The sensor has SPC as predefined interface which is locked and cannot be changed.

The predefined SPC configuration of TLE5014C16D is shown below:

Table 4-1 SPC Derivative Configuration TLE5014C16D

Interface	SPC unit time	SPC low time	SPC Trigger	Short Serial Message
SPC	2.5μs	5UT	constant 90UT	enabled

Table 4-2 SPC Derivative Configuration TLE5014C16D

Rolling Counter	Rolling Counter in CRC	Look-up Table	SPC ID	Output driver
enabled	disabled	enabled, preconfigured	00 _B	open drain w/
				controlled slope

Following parameters and values are allowed to modify:

• SPC unit time: 1.5μs / 2.5μs

Short serial message: enable / disableRolling counter in CRC: enable /disable

SPC ID: 0 / 1 / 2 / 3

4.2 TLE5014S16D

The sensor has SENT as predefined interface which is locked and cannot be changed.

The predefined SENT configuration of TLE5014S16D is shown below:

Table 4-3 SENT Derivative Configuration TLE5014S16D

Interface	SENT unit time	SENT low time	SENT Protocol Type	Short Serial Message
SENT	3.0µs	5UT	single secure sensor	enabled

Table 4-4 SENT Derivative Configuration TLE5014S16D

SENT Error Indication	SENT Data Range	Pause Pulse	Look-up Table	Output driver
error code 4091 enabled	1 4088	enabled	enabled, preconfigured	push/pull

Following parameters and values are allowed to modify:

- Short serial message: enable / disable
- Pause pulse: enable /disable
- SENT Protocol Type: Standard / Single Secure Sensor

Pre-Configured Derivatives

• SENT Error Indication: enable (data range: 1 ... 4088, error code: 4091) / disable (data range: 0 ... 4095, no error code)

4.3 TLE5014P16D

The sensor has PWM as predefined interface which is locked and cannot be changed.

Table 4-5 PWM Derivative Configuration TLE5014P16D

Interface	PWM Frequency	PWM Data Range	PWM Fault indication	PWM BIST Error or Reset Indication
PWM	200Hz	12.5% 87.5%	5%	95%

Table 4-6 PWM Derivative Configuration TLE5014P16D

PWM Starting Level	Look-up Table	Output driver
high (rising edge)	enabled, preconfigured	push/pull

 To be compliant with the existing safety analysis no change of above parameters is allowed unless authorized by Infineon

5 Package Information

The device is qualified with a MSL level of 3. It is halogen free, lead free and RoHS compliant.

5.1 Package Parameters

Table 5-1 Package Parameters

Parameter	Symbol Limit Values		Unit	Notes		
		Min.	Тур.	Max.		
Thermal resistance	R _{thJA}			120	K/W	Junction to air ¹⁾ , only one chip is active
				100	K/W	Junction to air ¹⁾ , both chips are active
	R _{thJC}			45	K/W	Junction to case
	R _{thJL}			70	K/W	Junction to lead
Moisture Sensitively Level	MSL 3	I				260°C ²⁾
Lead Frame	Cu					
Plating	Sn 100%					> 7 μm

¹⁾ according to Jedec JESD51-7

Table 5-2 Position of the die in the package

Parameter	Symbol	Limit Values		;	Unit	Notes
		Min.	Тур.	Max.		
Tilt				±3	0	in respect to the z-axis and reference plane (see Figure 5-1),
Rotational displacement				±3	0	in respect to the reference axis (see Figure 5-1)
Placement tolerance in package				±100	μm	in x and y direction, for each die in the package

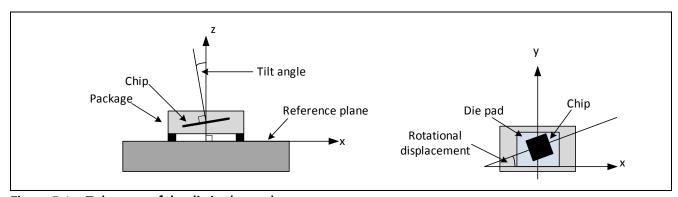


Figure 5-1 Tolerance of the die in the package

²⁾ suitable for reflow soldering with soldering profiles according to JEDEC J-STD-020E (December 2014)

5.2 Package Outline

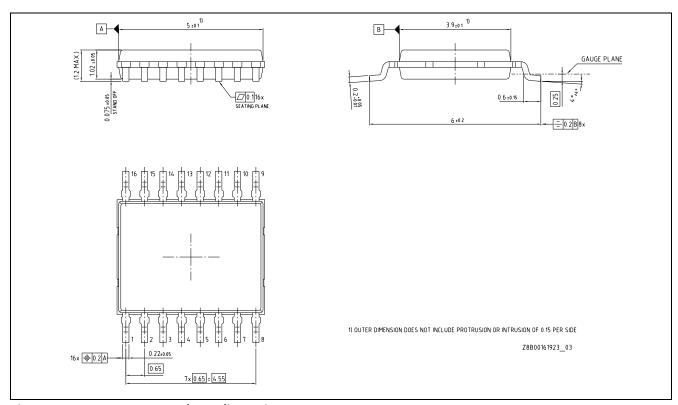


Figure 5-2 PG-TDSO-16 package dimension

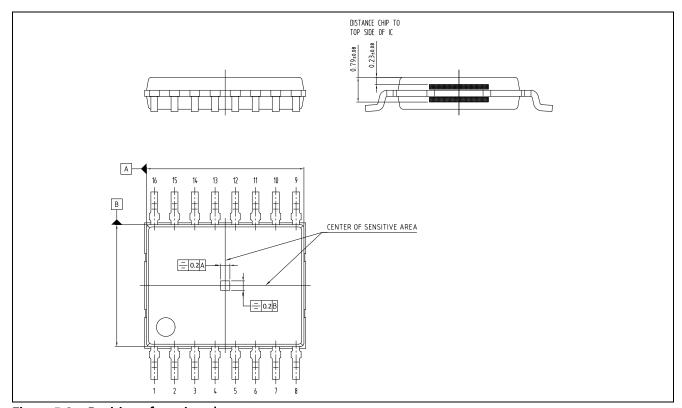


Figure 5-3 Position of sensing element

5.3 Footprint

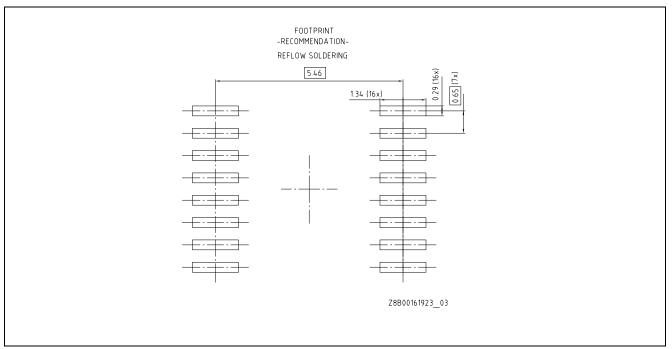


Figure 5-4 Footprint of PG TDSO-16

5.4 Packing

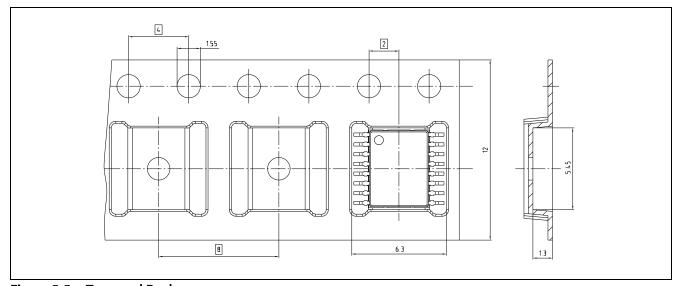


Figure 5-5 Tape and Reel

5.5 Marking

Position	Marking	Description	
1st Line	Gxxxx	Ggreen, 4-digitdate code	
2nd Line	xxxxxxx	Interface type and version (see Table 0-1, Marking)	
3rd Line	xxx	Lot code	

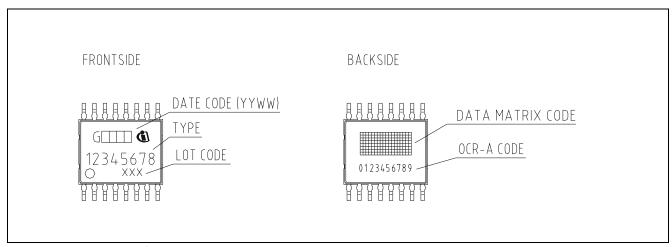


Figure 5-6 Marking of PG-TDSO-16

TLE5014D

Revision History

6 Revision History

Revision	Date	Changes					
1.0	2018-03-26	initial version					
-							

Trademarks of Infineon Technologies AG

HINICT*, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, Canpak™, CIPOS™, CIPURSE™, CoolDp™, CoolGan™, COOLIR™, CoolMos™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GanpowiR™, HEXFET™, HITFET™, HybridPack™, iMOTION™, IRam™, ISOFACE™, IsoPack™, LEDrivIR™, LITIX™, MIPAQ™, ModSTack™, my-d™, NovalithIc™, OPTIGa™, OptiMos™, ORIGa™, PowiRaudio™, PowiRstage™, PrimePack™, PrimeStack™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLewis™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-04-04 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.