imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet, Rev. 2.1, Aug. 2007

TLE6258-2G LIN Transceiver

Automotive Power

Never stop thinking

Edition 2007-08-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2004 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

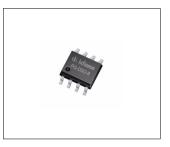
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

TLE6258-2G



LIN Transceiver

Features

- Single-wire transceiver, suitable for LIN protocol
- Compatible to LIN specification 1.2, 1.3 and 2.0
- Compatible to ISO 9141 functions
- Transmission rate up to 20 kBaud
- Very low current consumption in stand-by mode
- Wake-up from Bus
- Short circuit proof to ground and battery
- Overtemperature protection
- Green Product (RoHS compliant)
- AEC Qualified

Description

The single wire transceiver TLE6258-2G is a monolithic integrated circuit in a PG-DSO-8 package. It works as an interface between the protocol controller and the physical bus. The TLE6258-2G is especially suitable to drive the bus line in LIN systems in automotive and industrial applications. Further it can be used in standard ISO9141 systems.

In order to reduce the current consumption the TLE6258-2G offers a stand-by mode. A wake-up caused by a message on the bus sets the RxD output low until the device is switched to normal operation mode.

The IC is based on the Smart Power Technology SPT[®] which allows bipolar and CMOS control circuitry in accordance with DMOS power devices existing on the same monolithic circuit.

The TLE6258-2G is designed to withstand the severe conditions of automotive applications.

Туре	Package
TLE6258-2G	PG-DSO-8

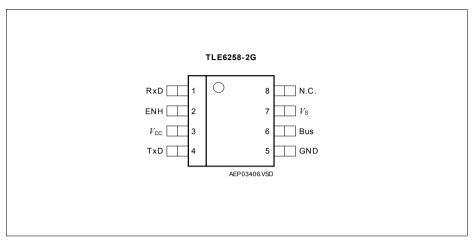


Figure 1 Pin Configuration (top view)

Pin De	efinitions and Functions
Symbol	Function
RxD	Receive data output; integrated pull-up, LOW in dominant state
ENN	Enable not input; integrated 30 k Ω pull-up, transceiver in normal operation mode when LOW
V _{CC}	5 V supply input
TxD	Transmit data input; integrated pull-up, LOW in dominant state
GND	Ground
Bus	Bus output/input; internal 30 k Ω pull-up, LOW in dominant state
Vs	Battery supply input
n.c.	Not connected
	Symbol RxD ENN V _{CC} TxD GND Bus V _S

Table 1 Pin Definitions and Functions

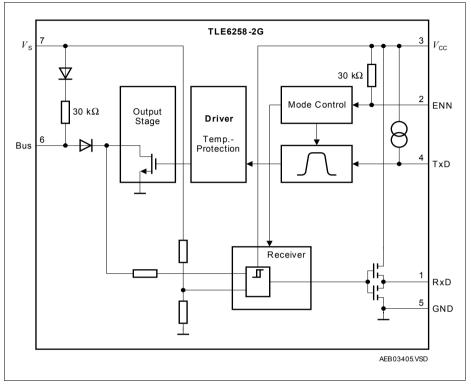
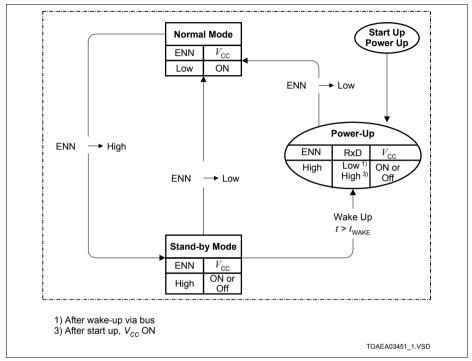



Figure 2 Functional Block Diagram

Application Information

Figure 3 State Diagram

For fail safe reasons the TLE6258-2G has already a pull-up resistor of 30 k Ω implemented. To achieve the required timings for the dominant to recessive transition of the bus signal an additional external termination resistor of 1 k Ω is required. It is recommended to place this resistor in the master node. To avoid reverse currents from the bus line into the battery supply line in case of an unpowered node, it is recommended to place a diode in series to the external pull-up. For small systems (low bus capacitance) the EMC performance of the system is supported by an additional capacitor of at least 1 nF in the master node (see Figure 6).

In order to reduce the current consumption the TLE6258-2G offers a stand-by mode. This mode is selected by switching the Enable Not (ENN) input high (see **Figure 3**). In the stand-by mode a wake-up caused by a message on the bus is indicated by setting the RxD output low. When entering the normal mode this wake-up flag is reset and the RxD output is released to transmit the bus data.

Parameter	Symbol	Limit	Values	Unit	Remarks
		Min.	Max.	1	
Voltages		1			
Supply voltage	V_{CC}	-0.3	6	V	-
Battery supply voltage	V_{S}	-0.3	40	V	-
Bus input voltage	$V_{\rm bus}$	-20	32	V	-
Bus input voltage	$V_{\rm bus}$	-20	40	V	<i>t</i> < 1 s
Logic voltages at EN, TxD, RxD	$V_{\rm I}$	-0.3	V _{CC} + 0.3	V	$0 V < V_{CC} < 5.5 V$
Electrostatic discharge voltage at $V_{\rm S}$, Bus	V_{ESD}	-4	4	kV	human body mode (100 pF via 1.5 kΩ)
Electrostatic discharge voltage	V_{ESD}	-2	2	kV	human body mode (100 pF via 1.5 kΩ)
Temperatures					
Junction temperature	T _i	-40	150	°C	_

Table 2 Absolute Maximum Ratings

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit

Table 3Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks
		Min.	Max.		
Supply voltage	V _{CC}	4.5	5.5	V	-
Battery Supply Voltage	Vs	6	35	V	-
Junction temperature	T	-40	150	°C	-
Thermal Shutdown (junct	ion temperat	ure)			-
Thermal shutdown temp.	$T_{\rm jSD}$	150	170	190	°C
Thermal shutdown hyst.	ΔT	-	10	-	К
Thermal Resistances	I				-
Junction ambient	$R_{\rm thj-a}$	-	185	K/W	-

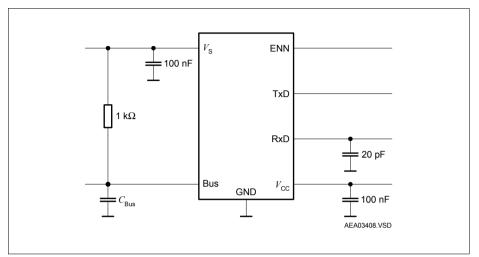
Table 4 Electrical Characteristics

Parameter	Symbol	Limit Values			Unit	Remark
		Min.	Тур.	Max.	1	
Current Consumption	l	1	-1	4		
Current consumption	I _{CC}	-	0.4	0.7	mA	recessive state; $V_{\text{TxD}} = V_{\text{CC}}$
Current consumption	I _S	-	0.5	1.0	mA	recessive state; $V_{\text{TxD}} = V_{\text{CC}}$
Current consumption	I _{CC}	-	0.4	0.8	mA	dominant state; $V_{TxD} = 0$ V; without R
Current consumption	I _S	-	1.3	2.0	mA	dominant state; $V_{TxD} = 0$ V; without R
Current consumption	I _{CC}		0.4	0.7	mA	power-up mode
Current consumption	I _S	-	0.5	1.0	mA	power-up mode, $V_{\rm CC}$ = 0 V, $V_{\rm S}$ = 13.5 V
Current consumption	I _{CC}	1	3	10	μA	stand-by mode
Current consumption	Is	_	18	40	μA	stand-by mode

Parameter	Symbol	Lir	nit Val	ues	Unit	Remark
		Min.	Тур.	Max.		
Enable Not Input (pin EN	IN)	1		4		1
HIGH level input voltage threshold	$V_{\rm ENN, off}$	-	2.8	$0.7 imes V_{ m CC}$	V	low power mode
LOW level input voltage threshold	$V_{\rm ENN,on}$	$0.3 imes V_{ m CC}$	2.2	-	V	normal operation mode
ENN input hysteresis	$V_{\rm ENN,hys}$	300	600	900	mV	-
ENN pull-up resistance	R _{ENN}	15	30	60	kΩ	-
Receiver Output RxD	1	1		1		1
HIGH level output current	$I_{\rm RD,H}$	-1.2	-0.8	-0.5	mA	$V_{\rm RD}$ = 0.8 $ imes$ $V_{\rm CC}$
LOW level output current	$I_{\rm RD,L}$	0.5	0.8	1.2	mA	$V_{\rm RD}$ = 0.2 × $V_{\rm CC}$
Transmission Input TxD						+
HIGH level input voltage threshold	$V_{TD,H}$	-	2.9	$0.7 imes V_{ m CC}$	V	recessive state
TxD input hysteresis	$V_{\rm TD,hys}$	300	700	900	mV	-
LOW level input voltage threshold	$V_{TD,L}$	$0.3 imes V_{ m CC}$	2.1	-	V	dominant state
TxD pull-up current	$I_{\rm TD}$	-150	-110	-70	μA	$V_{\text{TxD}} < 0.3 \times V_{\text{CC}}$

Parameter	Symbol	Lir	nit Val	ues	Unit	Remark	
		Min.	Тур.	Max.	1		
Bus Receiver							
Receiver threshold voltage, recessive to dominant edge	$V_{\rm bus,rd}$	$0.44 \times V_{\rm S}$	$0.48 \times V_{\rm S}$	_	V	-8 V < $V_{\rm bus}$ < $V_{\rm bus,dom}$	
Receiver threshold voltage, dominant to recessive edge	$V_{\rm bus,dr}$	-	$0.56 \times V_{S}$	$0.6 imes V_{ m S}$	V	$V_{\rm bus,rec}$ < $V_{\rm bus}$ < 20 V	
Receiver hysteresis	$V_{\rm bus,hys}$	$0.02 \times V_{\rm S}$	$0.04 \times V_{\rm S}$	$0.1 imes V_{ m S}$	mV	$V_{\rm bus,hys} = V_{\rm bus,rec}$ - $V_{\rm bus,dom}$	
Receiver threshold center voltage	$V_{\rm bus,cnt}$	$0.475 \times V_{\rm S}$	$0.5 imes V_{ m S}$	$0.525 \times V_{\rm S}$		LIN2.0 table 3.1	
Input leakage current	$I_{\rm bus, lek}$	-1			mA	$V_{\rm bus} = 0V, V_{\rm bat} = 12V,$ pull-up resistor as specified in LIN2.0	
Wake-up threshold voltage	$V_{\rm wake}$	$0.40 \times V_{\rm S}$	$0.5 imes V_{ m S}$	$0.6 imes V_{ m S}$	V	-	
Bus Transmitter							
Bus recessive output voltage	V _{bus,rec}	$0.9 imes V_{ m S}$	_	Vs	V	$V_{TxD} = V_{CC}$	
Bus dominant output voltage	$V_{\rm bus,dom}$	0	-	2	V	$V_{\text{TxD}} = 0 \text{ V}$ 7.3V <v<sub>S<27V</v<sub>	
		0	-	1.2	V	$V_{\text{TxD}} = 0 \text{ V}$ 6V <v<sub>S<7.3V</v<sub>	
Bus short circuit current	$I_{\rm bus,sc}$	40	100	150	mA	$V_{\rm bus, short}$ = 13.5 V	
Leakage current	I _{bus,lk}	-1	-	-	mA	$\label{eq:V_CC} \begin{split} V_{\rm CC} &= 0 \ {\rm V}, \ V_{\rm S} = 0 \ {\rm V}, \\ V_{\rm bus} &= -8 \ {\rm V}, \end{split}$	
		_	10	20	μA	$V_{\rm CC} = 0 \text{ V},$ $V_{\rm S} = 13.5 \text{V},$ $V_{\rm bus} = 20 \text{ V},$	
Bus pull-up resistance	R _{bus}	20	30	47	kΩ	-	
	*						

Parameter	Symbol	Liı	nit Val	ues	Unit	Remark
		Min.	Тур.	Max.	1	
Dynamic Transceiver Ch	aracteris	tics				
Falling edge slew rate	$S_{\rm bus(L)}$	-3	-2.0	-1	V/µs	¹⁾ 60% > V_{bus} > 40% 1 μ s < (τ = $R_{\text{L}} \times C_{\text{BUS}}$) < 5 μ s V_{CC} = 5 V; V_{S} = 13.5 V
Rising edge slew rate	S _{bus(H)}	1	1.5	3	V/µs	¹⁾ 40% < V_{bus} < 60% 1 µs < ($\tau = R_L \times C_{BUS}$) < 5 µs V_{CC} = 5 V; V_S = 13.5 V
Slope symmetry	t _{slopesym}	5		-5	μs	$t_{\rm fslope}$ - $t_{\rm rslope}$ $V_{\rm S}$ = 18 V
Propagation delay TxD LOW to bus	$t_{d(L),T}$	-	1	3	μs	$V_{\rm CC}$ = 5 V
Propagation delay TxD HIGH to bus	$t_{\rm d(H),T}$	-	1	3	μs	$V_{\rm CC}$ = 5 V
Propagation delay bus dominant to RxD LOW	$t_{d(L),R}$	-	1	6	μs	$V_{\rm CC}$ = 5 V; $C_{\rm RxD}$ = 20 pF
Propagation delay bus recessive to RxD HIGH	$t_{\rm d(H),R}$	_	1	6	μs	$V_{\rm CC}$ = 5 V; $C_{\rm RxD}$ = 20 pF
Receiver delay symmetry	t _{sym,R}	-2	-	2	μs	$t_{\text{sym,R}} = t_{d(L),R} - t_{d(H),R}$
Transmitter delay symmetry	t _{sym,T}	-2	-	2	μs	$t_{\text{sym},\text{T}} = t_{\text{d}(\text{L}),\text{T}} - t_{\text{d}(\text{H}),\text{T}}$
Duty cycle D1	t _{duty1}	0.396	_	_	μs	$\begin{array}{l} \mbox{duty cycle 1}^{1)} \\ \mbox{TH}_{Rec}(max) = 0.744 \times V_{S}; \\ \mbox{TH}_{Dom}(max) = 0.581 \times V_{S}; \\ \mbox{V}_{S} = 7.0 18 \mbox{ V}; \\ \mbox{t}_{bit} = 50 8 \mbox{V}; \\ \mbox{D1} = t_{bus_rec(min)}/2 \ t_{bit}; \end{array}$
Duty cycle D2	t _{duty2}	_	-	0.581	μs	$\begin{array}{l} \mbox{duty cycle } 2^{1)} \\ \mbox{TH}_{Rec}(max) = 0.422 \times V_{S}; \\ \mbox{TH}_{Dom}(max) = 0.264 \times V_{S} \\ \mbox{V}_{S} = 7.6 \hdots 18 \mbox{V}; \\ \mbox{t}_{bit} = 50 \mu s; \\ \mbox{D2} = t_{bus_rec}(max)/2 \ t_{bit}; \end{array}$


4.5 V < V_{CC} < 5.5 V; 6.0 V < V_{S} < 27 V; R_{L} = 500 Ω ; V_{ENN} < $V_{ENN,ON}$; -40 °C < T_{j} < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.

Parameter	Symbol	Limit Values			Unit	Remark
		Min.	Тур.	Max.	1	
Wake-up delay time	t _{wake}	30	100	150	μs	<i>T</i> _j < 125 °C
				170	μs	<i>T</i> _j < 150 °C
Delay time for mode change	t _{snorm}			50	μs	

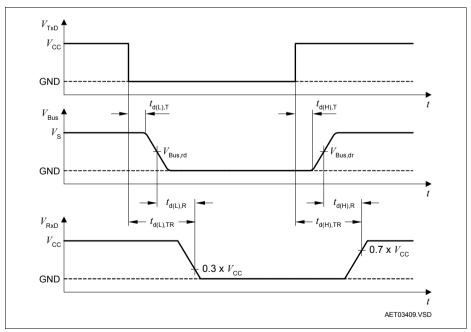

1) Bus load conditions concerning LIN spec 2.0 $C_{\rm bus}$, $R_{\rm bus}$ = 1 nF, 1 k Ω / 6.8 nF, 660 Ω / 10 nF, 500 Ω

Figure 5 Timing Diagram for Dynamic Characteristics

Application

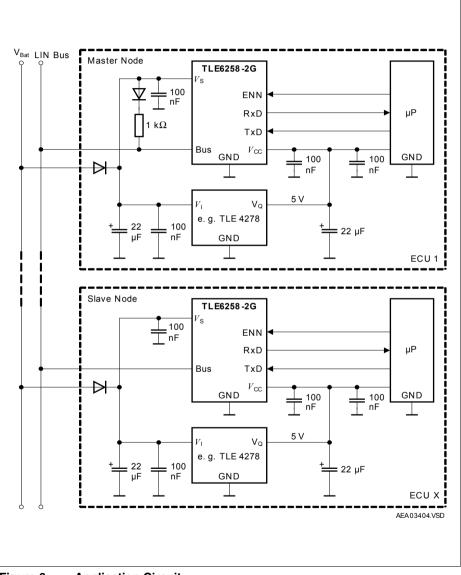
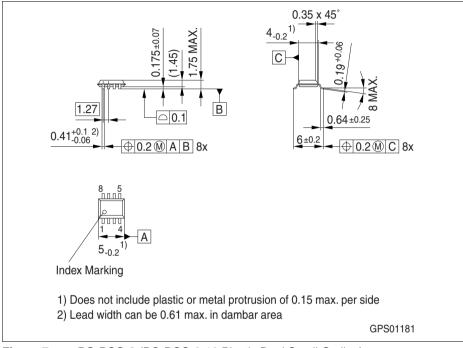
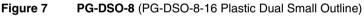




Figure 6 Application Circuit

Package Outlines

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

Revision History

Version	Date	Changes
Rev. 2.1	2007-08-08	 RoHS-compliant version of the TLE6258-2G All pages: Infineon logo updated Page 3: added "AEC qualified" and "RoHS" logo, "Green Product
		(RoHS compliant)" and "AEC qualified" statement added to feature list, package name changed to RoHS compliant versions, package picture updated, ordering code removed
		 Page 15: Changed package drawing to GPS01181 Package name changed to RoHS compliant versions, "Green Product" description added added Revision History updated Legal Disclaimer