imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TLE 7241E

Dual Channel Constant Current Control Solenoid Driver

Automotive Power

Never stop thinking

Table of Contents

Table of Contents

	Table of Contents	2
1 1.1 1.2 1.3	Overview . Features . Applications . General Description .	3 4
2	Pin Configuration	7
3	Maximum Ratings	9
4 4.1	Functional Range Second S	
5 5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.5 5.5.1 5.5.2 5.5.3 5.5.4 5.6 5.6.1 5.6.2	Functional Description and Electrical Characteristics Supply and Reference Input/Output Power Output Protection and Control Overvoltage Sensing and Protection Overcurrent / Short to V _{BAT} Sensing Open Load / Short to Ground Detection Thermal Shutdown Current Control Hysteretic Current Control Dither Control and Operation Input Command Out of Range / Dither Clipping Error Correction Registers / Average Switch Threshold Trimming SPI Command and Diagnosis Structure SPI Command Structure	13 14 15 16 17 21 28 30 30 37 43 44 46 46
6 6.1	Application	
7	Package Outlines	68
8	Revision History	69

Dual Channel Constant Current Control Solenoid Driver

TLE 7241E



1 Overview

1.1 Features

- Two Fully Independent Channels
- Integrated N-channel DMOS transistors
- Programmable Average Current with 10-bit resolution via SPI
 - I_{avq} range = 0 to 1000 mA (typical)
 - Programmable Superimposed Dither
 - Programmable Frequency (41 Hz to 1 kHz typ)
 - Programmable Amplitude (12.5 to 390 mVpp typ)
 - Programmable Hysteresis (40 to 110 mVpp typ)
- Interface and Control
 - 16-bit SPI (Serial Peripheral Interface) daisy chainable
 - A single "Default" pin to disable both channels and reset the programmable registers of both channels
 - 5.0 V and 3.3 V logic compatible I/O
 - The contents of all registers can be verified via SPI
 - Operation with or without external reference possible
- Protection
 - Overcurrent
 - Overvoltage
 - Overtemperature
- Diagnostics
 - Overcurrent / shorted solenoid
 - Overtemperature
 - Open load
 - Short to GND
- Green Product (RoHS compliant)
- AEC Qualified

Туре	Ordering Code	Package
TLE 7241E	on request	PG-DSO-20-27

Overview

1.2 Applications

- · Variable force solenoids (e.g. automatic transmission solenoids)
- Constant current controlled solenoids like
 - Idle Speed Control
 - Exhaust Gas Recirculation
 - Valve control
 - Suspension Control

1.3 General Description

The TLE 7241E is a dual channel constant current control solenoid driver with integrated DMOS power transistors. The average load current can be programmed to a value in the range of 0 mA to 1000 mA (with a 1 Ω external sense resistor) with 10 bits of resolution. Load current is controlled using a hysteretic control scheme with a programmable hysteresis value. A triangular "dither" waveform can be superimposed on the switching current waveform in order to improve the transfer function of the solenoid. The amplitude and frequency of the dither waveform are programmable by the SPI interface. The device is protected from damage due to overcurrent, overvoltage and overtemperature conditions, and is able to diagnose and report open loads, shorted loads, and loads shorted to ground.

Note: An external free-wheeling diode must be provided when using the TLE 7241E in constant current control mode, otherwise the IC will be damaged.

For best accuracy, an external 2.5 V reference voltage should be supplied at the REF pin. The TLE 7241E also includes an internal 2.5 V reference voltage, which can be selected by connecting the REF pin to ground. The reference voltage selection (internal or external) can be verified via the SPI interface.

TLE 7241E

Overview

Application Block Diagram

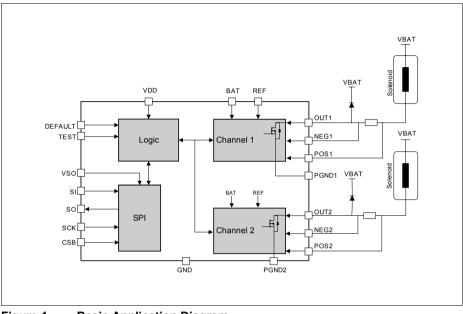
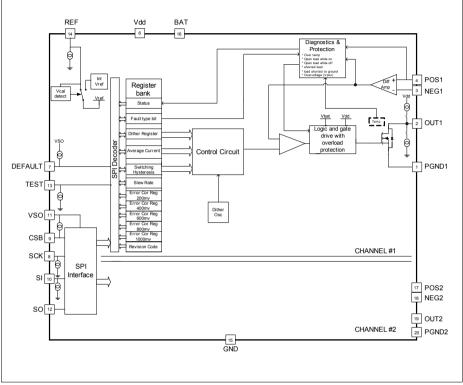
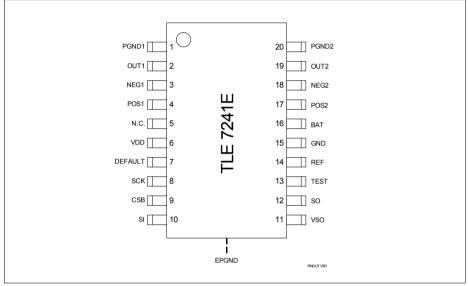


Figure 1 Basic Application Diagram

Overview

Detailed Block Diagram




Figure 2 Detailed Block Diagram

Pin Configuration

2 Pin Configuration

Pin Assignment

Pin Definitions and Functions

Pin	Pin Name	Pin Description
1	PGND1	Power Ground Channel 1; internally connected to PGND2
2	OUT1	Output Channel 1 ; Drain of Output DMOS; connect to negative terminal of external sense resistor
3	NEG1	Negative Sense Pin Channel 1 ; connect to negative terminal of external sense resistor with dedicated trace
4	POS1	Positive Sense Pin Channel 1 ; connect to positive terminal of external sense resistor with dedicated trace
5	NC	Not Connected; not bonded internally
6	V _{DD}	Logic Supply Voltage; connect a ceramic capacitor to GND near the device
7	DEFAULT	Control Input; Active high digital input. 3.3V and 5.0V logic compatible. In case of not used, connect to ground

Pin Configuration

Pin Definitions and Functions (cont'd)

Pin	Pin Name	Pin Description
8	SCK	SPI Clock ; Digital input pin. 3.3V and 5.0V logic compatible
9	CSB	Chip Select Bar ; Active low digital input pin. 3.3V and 5.0V logic compatible
10	SI	Serial Data Input; 3.3V and 5.0V logic compatible
11	V _{so}	SPI Supply Voltage; connect a ceramic capacitor to GND near the device
12	SO	Serial Data Output; Supplied by Vso pin
13	TEST	Test Pin; connect to GND
14	REF	Voltage Reference; connect to external 2.5 V reference, or connect to GND to enable internal reference.
15	GND	Ground; signal ground
16	BAT	BAT Input; connect to the solenoid supply voltage through a series resistor. Connect a ceramic capacitor to GND near the device
17	POS2	Positive Sense Pin Channel 2 ; connect to positive terminal of external sense resistor with dedicated trace
18	NEG2	Negative Sense Pin Channel 2 ; connect to negative terminal of external sense resistor with dedicated trace
19	OUT2	Output Channel 2 ; Drain of Output DMOS; connect to negative terminal of external sense resistor
20	PGND2	Power Ground Channel 2; internally connected to PGND1
Expose d Lead Frame	EPGND	GND; Should be connected to GND, PGND1 and PGND2 and to the ground plane of the ECU

Note: If a channel is unused, the OUTx, NEGx, and POSx pins should be connected together.

Maximum Ratings

3 Maximum Ratings

Absolute Maximum Ratings¹⁾

 $T_{\rm j}$ = -40 to 150 °C

Pos.	Parameter	Symbol		Limit Values	Unit	Notes
			Min.	Max.		
Volta	ges		1			1
M.1	Supply Voltage	$\begin{array}{c} BAT \\ V_{DD} \\ V_{SO} \end{array}$	-0.3 -0.3 -0.3	50 6.0 6.0	Vdc Vdc Vdc	_
M.2	Analog Input Voltage	POSx NEGx POSx-NEGx	-0.3 -0.3 -0.3	50 50 20	Vdc Vdc Vdc	-
M.3	Output Voltage	OUTx	-0.3	50	Vdc	-
M.4	Digital Input Voltage	REF TEST SI SCK CSB DEFAULT	-0.3 -0.3 -0.3 -0.3 -0.3 -0.3	$\begin{array}{c} {\rm min.} \; (6.0, V_{\rm DD} + 0.3) \\ 6.0 \\ 6.0 \\ 6.0 \\ {\rm min.} \; (6.0, V_{\rm SO} + 0.3) \\ {\rm min.} \; (6.0, V_{\rm SO} + 0.3) \end{array}$	Vdc Vdc Vdc Vdc Vdc Vdc Vdc	-
M.5	Digital Output Pin Voltage	SO	-0.3	min. (6.0, V _{SO} + 0.3)	Vdc	-
M.6	Dynamic Clamp Voltage T _{clamp} < 2.0 ms	BAT POSx NEGx OUTx	-1.5 -1.5 -1.5 -1.5	- - -	V V V V	-
M.7	Ground Pin Voltage (GND)	GND	-0.3	0.3	Vdc	-
M.8	Difference between PGND1 and PGND2	PGNDx	-0.3	0.3	Vdc	-
Othe	rs					
M.9	Biased Junction Temperature	Tj	-40	150	°C	-
M.10	Storage Temperature	T _{st}	-55	150	°C	-
M.11	Single Clamp Energy (OUTx) I=1.0A Tj=150 °C	E _{max}	-	30	mJ	-

Maximum Ratings

Absolute Maximum Ratings¹ (cont'd)

$T_{\rm i}$ = -40 to 150 °C

Pos.	Parameter	Symbol		Limit Values	Unit	Notes
			Min.	Max.		
M.12	ESD HBM all pins EIA/JESD22-A 114B (1.5 K Ω, 100 pF)	-	-2	+2	kV	-
M.13	ESD MM all pins EIA/JESD22-A115A (0 Ω, 200 pF)	-	-200	200	V	-

1) Not subject to production test, specified by design

All voltages are with respect to PGND1 & 2. Positive current flows into the pin unless otherwise specified.

Attention: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Functional Range

4 Functional Range

Functional Range

 $T_{\rm i}$ = -40 to 150 °C; V_{REF} = 2.5V

Pos.	Parameter	Symbol	Limi	t Values	Unit	Remarks
			Min.	Max.		
F.1	Voltage at BAT	V _{BAT}	9	18	V	-
F.2	Voltage at $V_{\rm DD}$	V_{DD}	4.75	5.25	V	-
F.3	Voltage at VSO	V _{VSO}	3.1	V _{DD} +0.3 or 5.25V	V	-
F.4	Voltage at SI, SCK	V _{INI}	-0.3	V _{DD} + 0.3	V	-
F.5	Voltage at CSB, DEFAULT, SO	V _{IN2}	-0.3	V _{SO} + 0.3	V	-
F.6	Voltage at POS1, POS2, NEG1, NEG2, OUT1, OUT2	$V_{OUT}, \\ V_{POS}, \\ V_{NEG}$	-0.3	50	V	-
F.7	Voltage Difference POS1-NEG1, POS2-NEG2	V_{POS} - V_{NEG}	0	1.23	V	-
F.8	Voltage at PGND1, PGND2, GND	V _{GND}	-0.3	0.3	V	-
F.9	SPI Clock Frequency	f_{clk}		3.2	MHz	$C_{\rm SO}$ = 200 pF max; $V_{\rm VSO}$ = 5 V
F.10	Junction Temperature	Tj	-40	150	°C	-

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

4.1 Thermal Resistance

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Тур.	Max.		
G.1	Junction to Case ¹⁾	R _{thjC}			5.2	K/W	2)
G.2	Junction to Ambient ¹⁾	R _{thjA}		26		K/W	2) 3)

Functional Range

- 1) Not subject to production test, specified by design.
- 2) Both channels on with 1W power dissipation per channel
- 3) Specified RthJA value is according to Jedec JESD51-2, -5, -7 at natural convection on FR4 2s2p board. The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70mm Cu, 2 x 35 mm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner layer.

5 Functional Description and Electrical Characteristics

5.1 Supply and Reference

The device has incorporated a power-on reset circuit. This feature will reset the commanded average current to 0 mA (device off), and will reset the programmable registers to their default values. The fault register bits are reset during power on reset. The device will remain off until a valid command is received. The device will also be reset in the case of an undervoltage condition on the pin $V_{\rm DD}$. Note that if the voltage on the pin *REF* pin is greater than the voltage on the pin $V_{\rm DD}$, a current will flow from the *REF* pin to the $V_{\rm DD}$ pin.

Electrical Characteristics 1)

Pos.	Parameter	Symbol	Li	mit Val	ues	Unit	Test Conditions and
			Min.	Typ. ²⁾	Max.		Instructions
5.1.1	REF Bias Current	I _{REF}	-20	-	20	μA	V_{REF} = 2.5 V (includes leakage current and a small current sink)
5.1.2	V _{DD} 5 V Supply Current	I _{DD}	_	-	15	mA	V _{DD} = 5.25 V; CSB = 5.0 V; DAC = 3FF
5.1.3	V _{SO} I/O Supply Current	I _{SO}	_	-	1	mA	V _{SO} = 5.25 V; CSB = 5.0 V
5.1.4	BAT Supply Current	I _{BAT}	_	-	1	mA	V _{DD} = 5.25 V; CSB = 5.0 V
5.1.5	V _{DD} Power-On Reset Threshold	V _{POR}	2.5	-	3.5	V	Power-On Reset Threshold
5.1.6	Internal Reference Voltage	V _{IREF}	2.45	2.5	2.55	V	Tested at wafer test.

 $T_{\rm i}$ = -40 to 150 °C; V_{BAT} = 9 V to 18 V; V_{DD} = 4.75 V to 5.25 V

1) Positive current flow is into the device.

Target @T_J = 25 °C

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_A = 25$ °C and the given supply voltage.

5.2 Input/Output

The DEFAULT pin is an active high input. A weak pull-up current (typical 15 μ A) on this pin ensures a defined level when this pin is not connected (e.g. open pin). An active high signal on the DEFAULT pin sets the commanded current for both channels to 0 mA, and resets all programmable registers to their default values. Any SPI commands that are received while the DEFAULT pin is high will be ignored, and the SO pin will remain in a high impedance state.

The fault register bits are not cleared when the Default pin is asserted.

Upon coming out of default mode, the commanded current will remain at 0 mA, device off, and the programmable registers will remain at their default values.

The DEFAULT pin must be asserted high whenever the voltage on the pin $V_{\rm DD}$ is less than the minimum $V_{\rm DD}$ operating voltage (4.75 V), otherwise the electrical characteristic specifications (see table below) may not be met. The diagnostic functions are not operational when the $V_{\rm DD}$ voltage is less than 4.75V.

The TEST pin is an active high pin. This pin must be connected directly to ground in the application, as it is only used for IC test purposes. A passive pull-down resistor in the device ensures a logic low value when the pin is not connected.

Electrical Characteristics 1)

 T_{i} = -40 to 150 °C; V_{BAT} = 9 V to 18 V; V_{DD} = 4.75 V to 5.25 V

Pos.	Parameter	Symbol	Liı	mit Valu	ies	Unit	Test Conditions
			Min.	Typ. ²⁾	Max.		and Instructions
5.2.1	DEFAULT Input Bias Current	$I_{DEFAULT}$	-25	-10	-5	μA	$V_{\text{DEFAULT}} = 0 \text{ V};$ Pull-up source is pin V_{SO}
5.2.2	TEST Pull-down Resistor	R _{TEST}	_	20	-	kΩ	-
5.2.3	SI, SCK, CSB, DEFAULT Input Threshold	V _{IH}	2.0	_	-	V	SCK is specified by design, not subject to production test.
5.2.4	SI, SCK, CSB, DEFAULT Input Threshold	V _{IL}	_	-	0.8	V	SCK is specified by design, not subject to production test.
5.2.5	SO Output High Voltage	V _{OH}	0.8 V _{SO}	-	-	V	SO <i>I</i> _o = -1 mA
5.2.6	SO Output Low Voltage	V _{OL}	-	-	0.4	V	SO <i>I</i> _o = 1 mA

1) Positive current flow is into the device.

Target @T_J = 25 °C

5.3 Power Output

The slew rate of the voltage on the pins OUT1 and OUT2 are programmable via the SPI interface. The fast settings are intended for fast switching solenoids (low inductance) to minimize power dissipation within the TLE 7241E, and to minimize DC current error due to overshooting the switch points. The slower slew rates can be used with slower switching solenoids (high inductance) to improve radiated emissions from the wiring harness.

Electrical Characteristics 1)

Limit Values Pos. Parameter Symbol Unit Test Conditions and Instructions Typ.²⁾ Min. Max. 0.25 5.3.1 OUTx rise and OUTx 0.5 1 Threshold: 4 V to 10 V μS $V_{\rm BAT} = 14 \, \rm V;$ fall times Slew $t_{\rm R}$ and $t_{\rm F}$ Rate reg = 0 $R_{\text{load}} = 5 \Omega$ 5.3.2 OUTx rise and OUTx 0.5 1 2 Threshold: 4 V to 10 V μS fall times Slew $V_{BAT} = 14 \text{ V};$ $t_{\rm R}$ and $t_{\rm F}$ Rate reg = 1 $R_{\text{load}} = 5 \Omega$ Threshold: 4 V to 10 V 5.3.3 OUTx rise and OUTx 1 2 4 uS $V_{RAT} = 14 V;$ fall times Slew $t_{\rm R}$ and $t_{\rm F}$ Rate reg = 2 $R_{\text{load}} = 5 \Omega$ Threshold: 4 V to 10 V 5.3.4 OUTx rise and OUTx 25 5 10 μS $V_{\rm BAT} = 14 \, \rm V;$ fall times Slew $t_{\rm R}$ and $t_{\rm F}$ Rate reg = 3 $R_{\text{load}} = 5 \Omega$ $V_{DS} = 24 \text{ V}$ 5.3.5 **OUTx Output** 10 I_{DSS} _ μA Off Leakage (00_µ) $V_{\rm DS} = V_{\rm CLAMP} - 1V$ 5.3.6 **OUTx Output** 3 I_{DSS} mΑ _ _ Off Leakage V_{CLAMP} is the measured (00_H) clamp voltage (Item 5.4.1.3) OUTx³⁾ Driver 5.3.7 $R_{\rm DS(ON)}$ 240 450 Driver on Resistance _ mΩ @T_{.1} = 150 °C on Resistance

 $T_{\rm i}$ = -40 to 150 °C; V_{BAT} = 9 V to 18 V; V_{DD} = 4.75 V to 5.25 V

1) Positive current flow is into the device.

2) *T*_J = 25 °C

3) Electrical Distributions must be performed on this parameter as defined in the AEC-Q100 Specification Table 2 test 27.

5.4 Protection and Control

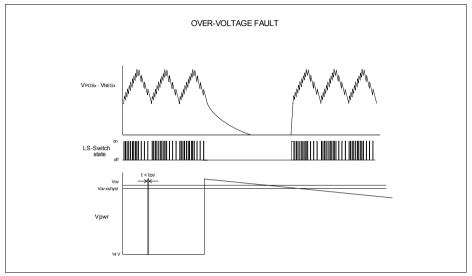
Electrical Characteristics 1)

 T_i = -40 to 150 °C; V_{BAT} = 9 V to 18 V; V_{DD} = 4.75 V to 5.25 V

Pos.	Parameter	Symbol	Li	mit Val	ues	Unit	Test Conditions and
			Min.	Typ. ²⁾	Max.		Instructions
5.4.1	POS/NEG IBIAS	POS/NEG IBIAS	-500	-	500	μA	DAC command =3FF POS=NEG=0V & POS=NEG=17V
5.4.2	POS/NEG LEAKAGE	POS/NEG LEAKAGE	-	40	60	μA	Fault typing bit = 0, Zero Current, POS = NEG = 14 V
			-20	0	20	μA	Fault typing bit = 1, Zero Current, POS = NEG = 14 V

1) Positive current flow is into the device.

2) T_J = 25 °C


5.4.1 Overvoltage Sensing and Protection

When the voltage on the BAT pin exceeds the Overvoltage Shutdown Threshold (see table below, **Item 5.4.1.1**), the output channel will shut off to protect the IC from excessive power dissipation. A short filter with a typical value of 6.5 μ s is included to prevent undesired shutdown due to short transient voltage spikes. Although SPI communication will remain functional, the output will remain off. The device will resume normal operation when the BAT voltage has dropped below the overvoltage hysteresis level. Note that the programmable registers are not reset, and the dither counter continues to operate during an overvoltage event.

Both channels are disabled when an overvoltage condition is detected.

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as outside normal operating range. Protections functions are not designed for continuous repetitive operation.

Figure 4 Overvoltage Shutdown

Electrical Characteristics 1)

 $T_{\rm i}$ = -40 to 150 °C; V_{BAT} = 9 V to 18 V; V_{DD} = 4.75 V to 5.25 V

Pos.	Parameter	Symbol	Li	mit Valu	les	Unit	Test Conditions
			Min.	Typ. ²⁾	Max.	_	and Instructions
5.4.1.1	BAT Overvoltage Shutdown	OV	30	35	40	Vdc	Ramp up BAT until outputs Off
5.4.1.2	BAT Overvoltage hysteresis	OV _{HYST}	-	1.0	-	Vdc	Ramp BAT down until outputs On ³⁾
5.4.1.3	OUTx Active Clamp Voltage	V _{clamp}	50	53	60	V	$I_{\rm d}$ = 20 mA, output off

1) Positive current flow is into the device.

2) *T*_J = 25 °C

3) Not subject to production test, specified by design.

5.4.2 Overcurrent / Short to V_{BAT} Sensing

An overcurrent fault is detected by sensing the voltage at the POS input pin. A comparator is used to detect the voltage while the gate drive is on. When the voltage at the POS input pin exceeds the short circuit / overcurrent threshold (see table below, **Item 5.4.2.3**) for a time greater than the short sense time (see table below, **Item 5.4.2.1**)

the driver will be turned off and the Overcurrent / Short to $V_{\rm BAT}$ ($V_{\rm SHT}$) fault bit will be latched until the fault register is read via SPI. The driver will remain in the off condition for the short circuit refresh time (see table below, **Item 5.4.2.2**). After the refresh time, the driver will automatically turn on again. If the short condition is no longer present, the channel will operate normally. If the short circuit condition persists, the driver will be cycled off after the short sense time once again. The refresh time has been chosen for minimal increase in power dissipation during a continuous fault condition.

In order to prevent false detection of an overcurrent / short to V_{BAT} fault during an "off to on" transition of the low-side output transistor, the detection circuit is disabled for a blanking time (see "Electrical Characteristics" on Page 31, Item 5.5.1.1 and Item 5.5.1.2) after the transistor is enabled (see Figure 16 and Figure 17).

The output transistor control circuit includes a current limit feature that will limit the transistor current to a maximum value (see table below, **Item 5.4.2.4**) in order to protect the device from excessive current flow.

If a new average current command or configuration command is received for a shorted channel while that channel is within the short circuit refresh time, the new data will be stored but the channel will remain in the off state until the refresh time expires. The new data will become active when the short circuit condition is released.

The Overcurrent / Short to VBAT detection is channel specific.

- Note: An Overcurrent / Short to VBAT fault is not detected if the average current command is <50 mA (with 1 W sense resistor).
- Note: An overcurrent / short to V_{BAT} fault is latched until read via the MISO return word.

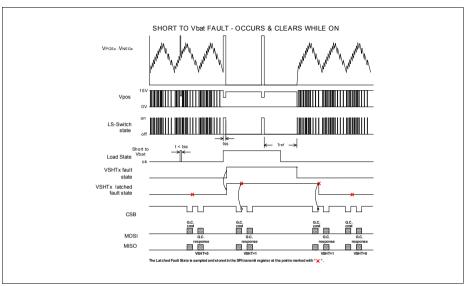


Figure 5 Short to V_{BAT} - Channel On

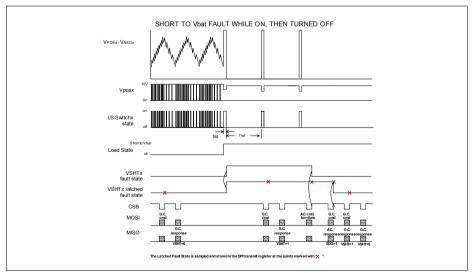
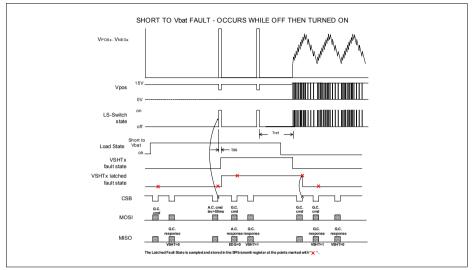
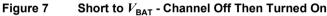




Figure 6 Short to V_{BAT} - Channel On Then Turned Off

Electrical Characteristics ¹⁾

 $T_{\rm i}$ = -40 to 150 °C; V_{BAT} = 9 V to 18 V; V_{DD} = 4.75 V to 5.25 V

Pos.	Parameter	Symbol	Limit Values			Unit	Test Conditions
			Min.	Typ. ²⁾	Max.		and Instructions
5.4.2.1	OUTx Short Sense Time	t _{ss}	30	60	90	μS	50 - 50 Threshold
5.4.2.2	OUTx Short Refresh Time	t _{ref}	3	14	24	ms	50 - 50 Threshold
5.4.2.3	OUTx Short circuit/ Overcurrent Fault Threshold	V _{VSHTOCT}	2.0	2.5	3.0	Vdc	V _{REF} = 2.5 V
5.4.2.4	OUTx Current Limit	I _{dlim}	3.0	5.0	6.0	A	$V_{\rm BAT}$ = 14 V; $V_{\rm DD}$ = 5V; output on

1) Positive current flow is into the device.

2) T_J = 25 °C

5.4.3 Open Load / Short to Ground Detection

The OLSG fault bit is set under the following conditions.

Operating Condition #1

The average current command is > 50 mA (with 1 Ω sense resistor) and the low-side driver is ON (solenoid current is increasing).

The OLSG (open load/short to ground) fault bit will be set if the low-side transistor remains on for a time greater than the on state open sense time ("Electrical Characteristics" on Page 23, Item 5.4.3.3).

Operating Condition #2

The average current command is > 50 mA (with 1 Ω sense resistor) and the low-side driver is OFF.

The OLSG fault bit is set if the voltage on the NEGx pin is less than the NEG pin OLSG threshold voltage ("Electrical Characteristics" on Page 23, Item 5.4.3.6) for a time greater than the NEG pin OLSG delay time ("Electrical Characteristics" on Page 23, Item 5.4.3.5).

Operating Condition #3

The average current command is < 50 mA (with a 1 Ω sense resistor) and the fault typing bit = 0.

The OLSG (open load/short to ground) fault bit will be set if the POS pin voltage is less than the off state open load threshold ("Electrical Characteristics" on Page 20, Item 5.4.2.3) for longer than the off state open load sense time ("Electrical Characteristics" on Page 23, Item 5.4.3.4) or the NEG pin is less than the NEG pin OLSG threshold voltage ("Electrical Characteristics" on Page 23, Item 5.4.3.6) for a time greater than the NEG pin OLSG delay time ("Electrical Characteristics" on Page 23, Item 5.4.3.5). A pull-down current ("Electrical Characteristics" on Page 23, Item 5.4.3.1) will be activated between the POS pin and ground when the Fault Typing bit = 0.

Operating Condition #4

The average current command is < 50 mA (with a 1 Ω sense resistor) and the fault typing bit = 1.

The OLSG fault bit will be set when the voltage on the pin POSx is below the off state open load threshold ("Electrical Characteristics" on Page 20, Item 5.4.2.3) for the a time greater than $t_{os(off)}$ ("Electrical Characteristics" on Page 23, Item 5.4.3.4) or the NEG pin is less than the NEG pin OLSG threshold voltage ("Electrical Characteristics" on Page 23, Item 5.4.3.6) for a time greater than the NEG pin OLSG delay time

("Electrical Characteristics" on Page 23, Item 5.4.3.5). A pull-up current ("Electrical Characteristics" on Page 23, Item 5.4.3.2) will be activated between V_{DD} and the POS pin when the Fault Typing bit = 1.

Distinguishing between Open Load and Short to Ground Faults

When an Open Load/Short to Ground is flagged, to distinguish between Open Load and Short-To-Ground, a general configuration command word must be sent three times to the appropriate channel with the fault typing bit set, and the average current must be programmed to zero. Check the OL/SG fault bit from the third write. A '0' signifies Open Load, '1' signifies Short-To-Ground. A short to ground will still be flagged for 0 mA command current. Note that setting the fault typing bit under both normal & fault conditions does not change the status of the output or the current flowing.

The fault typing bit enables a 40 μ A pull-up current on the POS pin when high, and enables a 40 μ A pull-down current on the POS pin when low.

Electrical Characteristics ¹⁾

 $T_{\rm i}$ = -40 to 150 °C; V_{BAT} = 9 V to 18 V; V_{DD} = 4.75 V to 5.25 V

Pos.	Parameter	Symbol	Limit Values			Unit	Test Conditions
			Min.	Typ. ²⁾	Max.		and Instructions
5.4.3.1	POS Open detect current	I _{OL}	20	40	60	μA	Fault typing bit = 0, Zero Current
5.4.3.2	POS Load short to ground detect	I _{SG}	-60	-40	-20	μA	Fault typing bit = 1, Zero Current, POS = NEG = 2 V
5.4.3.3	OUTx On-State open sense time – POS pin	t _{os} (on)	6	12	24	ms	50 - 50 Threshold ³⁾
5.4.3.4	OUTx Off-State open sense time – POS pin	t _{os} (off)	30	60	90	μS	50 - 50 Threshold ³⁾
5.4.3.5	NEGx Open load / short to ground filter time – NEG pin	T _{OLSG_N} (off)	30	60	90	μs	-
5.4.3.6	NEGx Open load / short to ground detection threshold – NEG pin	V _{OLSG_N}	2.0	2.8	3.6	V	-

1) Positive current flow is into the device.

2) T_J = 25 °C

3) Not subject to production test, tested by scanpath.

Diagnostics Timing Diagrams

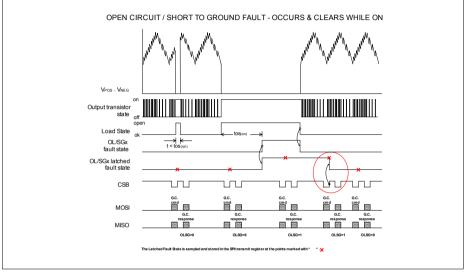
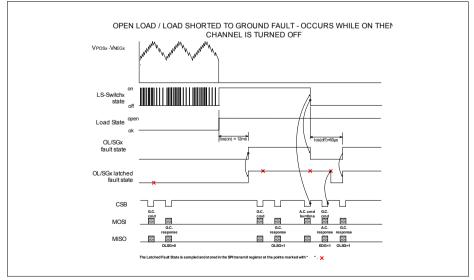
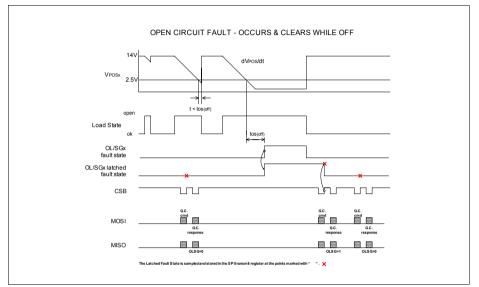




Figure 8 Open Load / Short to Ground Fault - Channel On

Figure 10 Open Load Short to Ground - Channel Off

$$\frac{\mathrm{d}V_{\mathrm{POS}}}{\mathrm{d}t} = \frac{-(i_{\mathrm{OL}} - i_{\mathrm{Rrecirc}})}{(C_{\mathrm{POS}} + C_{\mathrm{NEG}} + C_{\mathrm{OUT}})} \tag{1}$$

 i_{OL} = open load detection pull down current (5.4.3.1) $i_{Rrecirc}$ = reverse leakage current of recirculation diode C_{POS} = external capacitance on the POS pin C_{NEG} = external capacitance of the NEG pin C_{OUT} = external capacitance on the OUT pin