imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

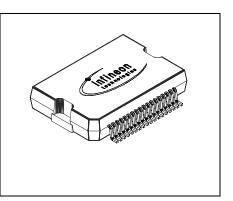
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Door Module Power IC TLE 8201R

Data Sheet Rev. 2.0

Features


- Full bridge (150mΩ) for main doorlock motor
- Two half-bridges (400mΩ) for deadbolt and mirror position motor or mirror fold motor
- Two half-bridges (800mΩ) for mirror position
- High-side switch $(100m\Omega)$ for mirror defrost
- Four high-side switches (500m $\Omega)$ for 5W and 10W lamps
- Current sense analog output with multiplex
- · All outputs with short circuit protection and diagnosis
- · Over-temperature protection with warning
- · Open load diagnosis for all outputs
- Charge pump-Output for n-channel MOS-FET reverse-polarity protection
- Very low current consumption in sleep mode
- Standard 16-bit SPI for control and diagnosis
- Over-and Undervoltage Lockout
- Power-SO package with full-size heatslug for excellent low thermal resistance

Туре	Ordering Code	Package/Shipment
TLE 8201R	-	PG-DSO-36-27

Functional Description

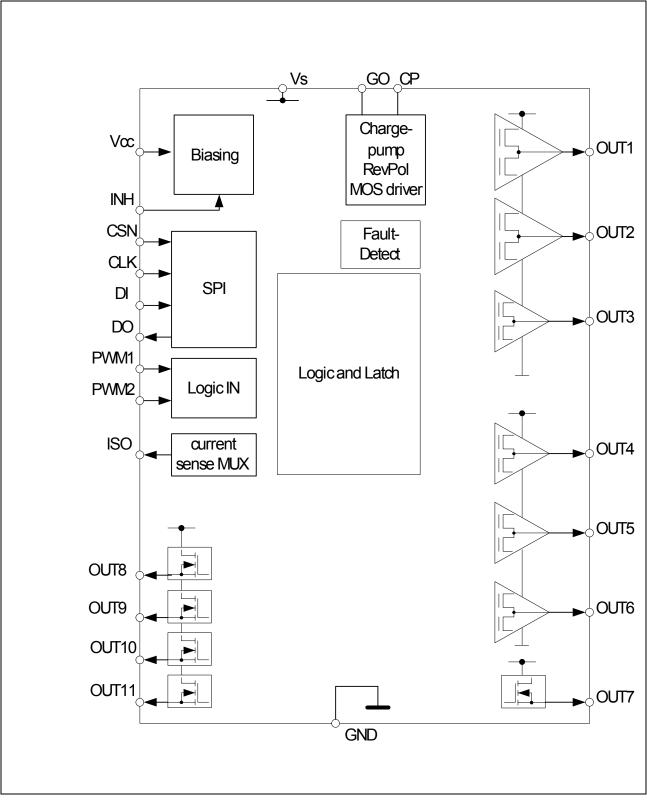
The TLE 8201R is an Application Specific Standard Product for automotive door-module applications. It includes all the power stages necessary to drive the loads in a typical front door application, i.e. central lock, deadlock or mirror fold, mirror position, mirror defrost and 5W or 10W lamps, e.g for turn signal, courtesy/warning or control panel illumination. It is designed as a monolithic circuit in Infineons mixed technology SPT which combines bipolar and CMOS control circuitry with DMOS power devices.

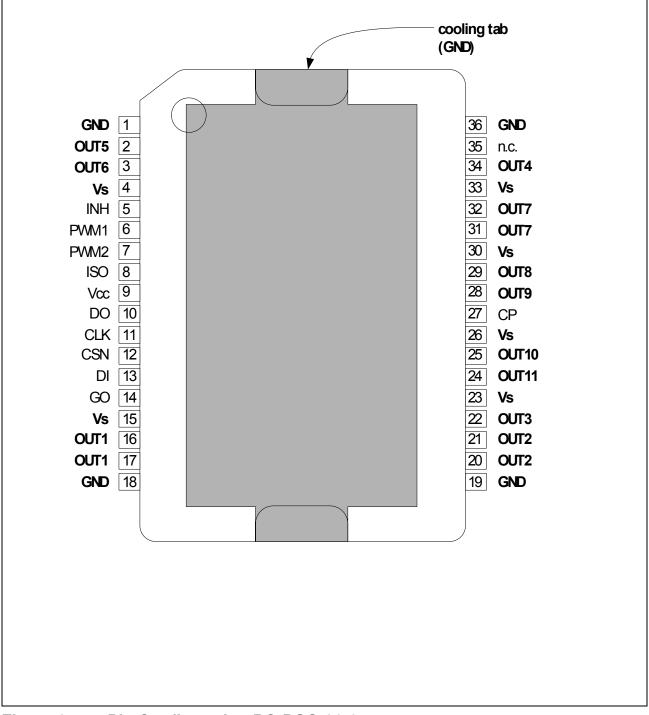
Short circuit and over-temperature protection and a detailed diagnosis are in line with the safety requirements of automotive applications. The current sense output allows to improve the total system performance. The standard SPI interface saves microcontroller I/O lines while still giving flexible control of the power stages and a detailed diagnosis.

Table of	Contents P	Page
1	Block Diagram	3
2 2.1 2.2	Pin Configuration Pin Assignment Pin Definitions and Functions	4
3 3.1 3.2 3.3	Electrical Characteristics Absolute Maximum Ratings	7 8
4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4 4.4.1 4.4.2 4.5 4.5.1 4.5.2 4.6 4.6.1 4.6.2	Block Description and Electrical Characteristics Power Supply General Sleep-Mode Reverse Polarity Electrical Characteristics Monitoring Functions Power Supply Monitoring Temperature Monitoring Current Sense SPI General Register Address SPI bit definitions Status Register Address selection and Reset Electrical Characteristics PWM inputs Power-Outputs 1-6 (Bridge Outputs) Protection and Diagnosis Electrical Characteristics Power-Output 7 (Mirror heater driver) Protection and Diagnosis Electrical Characteristics Power-Outputs 8 - 11 (Lamp drivers) Protection and Diagnosis Electrical Characteristics	9 9 9 9 9 9 9 9 9 11 12 13 14 14 14 14 20 21 22 25 27 31 33 35 35
4.7 4.7.1	Logic In- and Outputs Electrical Characteristics	. 40
5	Application Description	. 41
6	Package Outlines	. 43

Block Diagram

1 Block Diagram




Figure 1 Block Diagram

Pin Configuration

2 Pin Configuration

2.1 Pin Assignment


Figure 2 Pin Configuration PG-DSO-36-27

Pin Configuration

2.2 Pin Definitions and Functions

Pin	Symbol	Function
cooling tab	GND	Cooling tab , internally connected to GND; to reduce thermal resistance place cooling areas and thermal vias on PCB.
1, 18, 19, 36	GND	Ground; internally connected to cooling tab (heat slug).
2	OUT5	Power-Output of half-bridge 5; DMOS half-bridge
3	OUT6	Power-Output of half-bridge 6; DMOS half-bridge.
4, 15, 23, 26, 30, 33	Vs	Power supply ; needs decoupling capacitors to GND. > 47μ F electrolytic in parallel with 100nF ceramic is recommended. All Vs pins must be connected externally
5	INH	Inhibit ; active low. Sets the device in sleep mode with low current consumption when left open or pulled to LOW. Has an internal pull down current source
6	PWM1	Logic Input for direct power stage control ; direct input to control the high-side switches selected by the SPI xsel1 bits in control register CtrlReg01
7	PWM2	Logic Input for direct power stage control ; direct input to control the switches selected by the SPI xsel2 bits in control register CtrlReg11
8	ISO	Current sense output ; Mirrors the current of the high-side switch selected by the current sense multiplexer control bits ISx
9	Vcc	Logic Supply Voltage ; needs decoupling capacitors to GND (pin 1). 10µF electrolytic in parallel with 10nF ceramic is recommended
10	DO	Serial Data Output; Transfers data to the master when the chip is selected by CSN=LOW. Data transmission is synchronized by CLK, DO state is changed on the rising edge of CLK. The most significant bit (MSB) is transferred first. The pin is tristated as long as CSN=HIGH
11	CLK	Serial Data Clock Input; Receives the clock signal from the master and clocks the SPI shift register. Has an internal pull down current source
12	CSN	Serial Port Chip Select Not Input; SPI communication is enabled by pulling CSN to LOW. CLK must be LOW during the transition of CSN. The CSN-pin has an internal pull-up current source

Pin Configuration

Pin	Symbol	Function
13	DI	Serial Data Input ; Receives serial data from the master when the chip is selected by CSN=LOW. Data transmission is synchronized by CLK. Data are accepted on the falling edge of CLK. The LSB is transferred first. The DI-pin has an internal pull- down current source.
14	GO	Gate Out ; Charge pump output to drive the gate of external n- channel MOS-FET for reverse polarity protection
16, 17	OUT1	Power-Output of half-bridge 1; DMOS half-bridge.
20, 21	OUT2	Power-Output of half-bridge 2; DMOS half-bridge.
22	OUT3	Power-Output of half-bridge 3; DMOS half-bridge
24	OUT11	Power Output of high-side switch 11; DMOS high-side switch
25	OUT10	Power Output of high-side switch 10; DMOS high-side switch
27	СР	Charge Pump; pin for optional external charge-pump reservoir capacitor. 3.3 nF to Vs is recommended
28	OUT9	Power-Output of high-side switch 9; DMOS high-side switch
29	OUT8	Power-Output of high-side switch 8; DMOS high-side switch
31, 32	OUT7	Power Output of high-side switch 7; DMOS high-side switch
34	OUT4	Power-Output of half-bridge 4; DMOS half-bridge
35	n.c.	Not connected

Electrical Characteristics

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Pos.	Parameter	Symbol	Limit	Limit Values		Remarks
			min.	max.		
3.1.1	Supply voltage	VS	-0.3	40	V	-
3.1.2	Logic supply Voltage	V _{CC}	-0.3	5.5	V	-
3.1.3	Logic input- and output Voltages		-0.3	5.5	V	-
3.1.4	Voltage at GO-pin	V _{GO}	-16	$V_{\rm S}$ + 5	V	-
3.1.5	Junction temperature	Tj	-40	150	°C	-
3.1.6	Storage temperature	T _{stg}	-50	150	°C	-
3.1.7	ESD capability of power stage output and $V_{\rm S}$ pins	V _{ESD}	_	4	kV	Human Body Model according to ANSI EOS\ESD S5.1
3.1.8	ESD capability of logic pins and ISO pin	V _{ESD}	_	2	kV	standard (eqv. to MIL STD 883D and JEDEC JESD22- A114)

- Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

Electrical Characteristics

3.2 Operating Range

Pos.	Parameter	Parameter Symbol Limit Values		Unit	Remarks	
			min.	max.		
3.2.1	Supply voltage	V _S	5	40	V	Including over- voltage lockout
3.2.2	Supply voltage	VS	5	20	V	Functional
3.2.3	Supply voltage	V _S	8	20	V	Parameter Specification
3.2.4	Logic supply voltage	V _{CC}	4.75	5.5	V	-
3.2.5	SPI clock frequency	<i>f</i> clk	_	2	MHz	-
3.2.6	Junction temperature	Tj	-40	150	°C	-

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the limit given at the table.

3.3 Thermal Resistance

Pos.	Parameter	Symbol	Limit Values		Limit Values		Limit Values		Limit Values		Limit Values		Unit	Conditions
			min.	max.										
3.3.1	Junction pin	R _{thjC}	-	1.5	K/W	-								
3.3.2	Junction ambient	R _{thjA}	_	50	K/W	minimal footprint								

Block Description and Electrical Characteristics

4 Block Description and Electrical Characteristics

4.1 **Power Supply**

4.1.1 General

The TLE 8201R has two power supply inputs: All power drivers are connected to the supply voltage $V_{\rm S}$ which is connected to the automotive 12 V board-net. The internal logic part is supplied by a separate Voltage $V_{\rm CC}$ = 5 V.

The advantage of this system is that information stored in the logic remains intact in the event of short-term failures in the supply voltage V_s . The system can therefore continue to operate after V_s has recovered, without having to be reprogrammed.

A rising edge on V_{cc} triggers an internal Power-On Reset (POR) to initialize the IC at power-on. All data stored internally is deleted, and the outputs are switched to high-impedance status (tristate).

4.1.2 Sleep-Mode

The TLE 8201R can be put in a low current-consumtion mode by setting the input INH to LOW. The INH pin has an internal pull-down current source. In sleep-mode, all output transistors are turned off and the SPI is not operating. When enabling the IC by setting INH from L to H, a Power-On Reset is performed as described above.

4.1.3 **Reverse Polarity**

The TLE 8201R requires an external reverse polarity protection. The gate-driver (charge-pump output) for an external n-channel logic-level MOS-FET is integrated. The gate voltage is provided at pin GO which should be connected as shown in the application diagram.

4.1.4 Electrical Characteristics

Electrical Characteristics

8 V < V_S < 20 V; 4.75 V < V_{CC} < 5.25 V; INH = High; all outputs open; -40 °C < T_i < 150 °C; unless otherwise specified

Pos.	Parameter	Sym-	Lir	Limit Values			Conditions
		bol	min.	typ.	max.		

Current Consumption

4.1.1	Supply current	IS	_	3.0	7.0	mA	-
4.1.2	Logic supply current	I _{CC}	-	5	10	mA	SPI not active

Block Description and Electrical Characteristics

Electrical Characteristics

8 V < V_S < 20 V; 4.75 V < V_{CC} < 5.25 V; INH = High; all outputs open; -40 °C < T_j < 150 °C; unless otherwise specified

Pos.	Parameter	Sym-	Limit Values			5		Unit	Conditions
		bol	min.	typ.	max.				
4.1.3	Quiescent current	IS	_	2.5	5	μA	INH = L,		
4.1.4	Logic quiescent current	I _{CC}	_	0.2	1	μA	$V_{\rm S} = 14 \rm V,$		
4.1.5	Total quiescent current	$I_{\rm S} + I_{\rm cc}$	-	3	6	μA	V _{OUT7-11} = 0V; T _j < 85 °C		

Charge Pump-output for Reverse-Polarity Protection FET (GO)

					•	,	
4.1.6	Gate-Voltage	V _{GO} - V _S	5	-	8	V	I _{GO} = 50 μA
4.1.7	Setup-time	t _{GO}	-	-	1	ms	-
4.1.8	Reverse leakage current	I _{lkGO}	_	_	5	μA	$V_{\rm S} = 0 \text{ V}$ $V_{\rm GO} = -14 \text{ V}$

4.2 Monitoring Functions

4.2.1 Power Supply Monitoring

The power supply Voltage $V_{\rm S}$ is monitored for over- and under voltage.

Under Voltage

If the supply voltage V_S drops below the switch off voltage $V_{UV OFF}$, all output transistors are switched off and the power supply fail bit PSF is set. The error is not latched, i.e. if V_S rises again and reaches the switch on voltage $V_{UV ON}$, the power stages are restarted and the error bit is reset.

Over Voltage

If the supply voltage $V_{\rm S}$ rises above the switch off voltage $V_{\rm OV\,OFF}$, all output transistors are switched off and the power supply fail bit (bit 7 of the SPI diagnosis word) is set. The error is not latched, i.e. if $V_{\rm S}$ falls again and reaches the switch on voltage $V_{\rm OV\,ON}$, the power stages are restarted and the error is reset.

4.2.1.1 Characteristics Power Supply Monitoring

Electrical Characteristics

8 V < V_S < 20 V; 4.75 V < V_{CC} < 5.25 V; INH = High; all outputs open; -40 °C < T_i < 150 °C; unless otherwise specified

Pos.	Parameter	Sym- Limit Values				Unit	Conditions
		bol	min.	typ.	max.		
4.2.1	UV-Switch-ON voltage	V _{UVON}	_	-	5.2	V	$V_{\rm S}$ increasing
4.2.2	UV-Switch-OFF voltage	VUVOFF	4.0	-	5.0	V	$V_{\rm S}$ decreasing
4.2.3	UV-ON/OFF-Hysteresis	V _{UVHY}	-	0.25	-	V	V _{UVON} - V _{UVOFF}
4.2.4	OV-Switch-OFF voltage	V _{OVOF} F	21	-	25	V	$V_{\rm S}$ increasing
4.2.5	OV-Switch-ON voltage	V _{OVON}	20	-	24	V	$V_{\rm S}$ decreasing
4.2.6	OV-ON/OFF-Hysteresis	V _{OVHY}	0.5	1	-	V	V _{OVOFF} - V _{OVON}

4.2.2 Temperature Monitoring

Temperature sensors are integrated in the power stages. The temperature monitoring circuit compares the measured temperature to the warning and shutdown thresholds. If one or more temperature sensors reach the warning temperature, the temperature warning bit TW is set to HIGH. This bit is not latched (i.e. if the temperature falls below the warning threshold (with hysteresis), the TW bit is reset to LOW again).

If one or more temperature sensors reach the shut-down temperature, the outputs are shut down as described in the next paragraph and the temperature shut-down bit TSD is set to HIGH. The shutdown is latched (i.e. the output stages remain off and the TSD bit set high until a SRR command is sent or a power-on reset is performed).

The power-stages are subdivided into two groups for over-temperature shut-down:

- Group1: OUT 1, OUT 2 and OUT 3
- Group2: OUT 4 to 11

If one or more temperature sensors within a group reaches the shutdown threshold, all outputs within the group are switched off, while the other outputs continue normal operation.

4.2.2.1 Characteristics Temperature Monitoring

Electrical Characteristics

8 V < V_S < 20 V; 4.75 V < V_{CC} < 5.25 V; INH = High; all outputs open; -40 °C < T_i < 150 °C; unless otherwise specified

Pos.	Parameter	,				Unit	Conditions
		bol	min.	typ.	max.		
4.2.7	Thermal warning junction temperature ¹⁾	T _{jW}	120	145	170	°C	-
4.2.8	Temperature warning hysteresis ¹⁾	ΔT	-	30	-	К	-
4.2.9	Thermal shutdown junction temperature ¹⁾	T _{jSD}	150	175	200	°C	_
4.2.10	Thermal switch-on junction temperature ¹⁾	T _{jSO}	120	-	170	°C	_
4.2.11	Temperature shutdown hysteresis ¹⁾	ΔT	_	30	_	К	_
4.2.12	Ratio of SD to W temperature ¹⁾	T _{jSD} / T _{jW}	1.05	1.20	-	-	-

¹⁾ Not subject to production test, specified by design

4.2.3 Current Sense

A current proportional to the output current that flows from the selected power output to GND is provided at the ISO (I sense out) pin. The output selection is done via the SPI. The sense current can be transformed into a voltage by an external sense resistor and provided to an A/D converter input (see section application).

4.2.3.1 Characteristics Current Sense

Electrical Characteristics

8 V < V_S < 20 V; 4.75 V < V_{CC} < 5.25 V; INH = High; all outputs open; -40 °C < T_i < 150 °C; unless otherwise specified

Pos.	Parameter	Sym-	Lir	Limit Values			Conditions	
		bol	min.	typ.	max.			
HS1, F	IS2 (Register IS = 000, 001)				•			
4.2.13	Output voltage range	V _{ISO12}	0	-	3	V	$V_{\rm CC}$ = 5 V	
4.2.14	Current Sense Ratio	k _{ILIS12}	-	2000	-	-	$k_{\rm ILIS} = I_{\rm OUT}/I_{\rm ISO}$	
4.2.15	Current Sense accuracy	k _{ILISacc}	_	-	10	%	I _{OUT} > 3 Α	
4.2.16	Matching	$\Delta k_{\rm ILIS1}$	-6	1	2	%	$\Delta k_{\text{ILIS12}} = (k_{\text{ILIS1}} - k_{\text{ILIS2}}) / k_{\text{ILIS1}}$	
HS3, F	IS4 (Register IS = 010, 011)				•			
4.2.17	Output voltage range	V _{ISO34}	0	-	3	V	$V_{\rm CC} = 5 \text{ V}$	
4.2.18	Current Sense Ratio	k _{ILIS34}	-	1000	-	-	$k_{\rm ILIS} = I_{\rm OUT}/I_{\rm ISO}$	
4.2.19	Current Sense accuracy	k _{ILISacc}	-	-	10	%	I _{OUT} > 1.5 Α	
HS7 (F	Register IS = 100)					-		
4.2.20	Output voltage range	V _{ISO7}	0	-	3	V	$V_{\rm CC}$ = 5 V	
4.2.21	Current Sense Ratio for HS7	k _{ILIS7}	-	2000	-	-	$k_{\rm ILIS} = I_{\rm OUT}/I_{\rm ISO}$	
4.2.22	Current Sense accuracy	k _{ILISacc}	_	_	10	%	I _{OUT} > 2Α	

4.3 SPI

4.3.1 General

The SPI is used for bidirectional communication with a control unit. The TLE 8201R acts as SPI-slave and the control unit acts as SPI-master. The 16-bit control word is read via the DI serial data input. The status word appears synchronously at the DO serial data output. The communication is synchronized by the serial clock input CLK.

Standard data transfer timing is shown in **Figure 3**. The clock polarity is data valid on falling edge. CLK must be low during CSN transition. The transfer is MSB first.

The transmission cycle begins when the chip is selected with the chip-select-not (CSN) input (H to L). Then the data is clocked through the shift register. The transmission ends when the CSN input changes from L to H and the word which has been read into the shift register becomes the control word. The DO output switches then to tristate status, thereby releasing the DO bus circuit for other uses. The SPI allows to parallel multiple SPI devices by using multiple CSN lines. The SPI can also be used with other SPI-devices in a daisy-chain configuration.

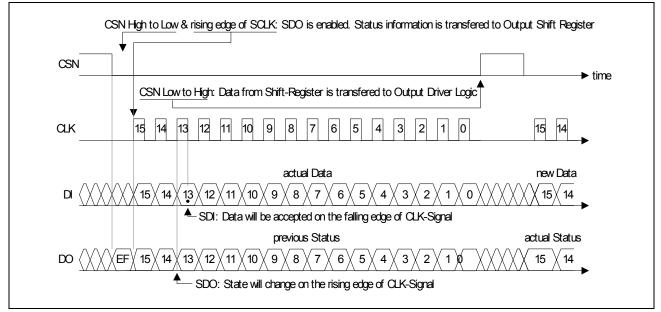


Figure 3 SPI standard data transfer timing

4.3.2 Register Address

The 16-bit SPI frame is composed of an addressable block, an address-independent block and a 2-bit address as shown in **Figure 4**.

The control word transmitted from the master to the TLE 7201R is executed at the end of the SPI transmission (CSN L -> H) and remains valid until a different control word is transmitted or a power on reset occurs. At the beginning of the SPI transmission (CSN

H ->L), the diagnostic data currently valid are latched into the SPI and transferred to the master. For Status Register address handling, please refer to **Section 4.3.4**

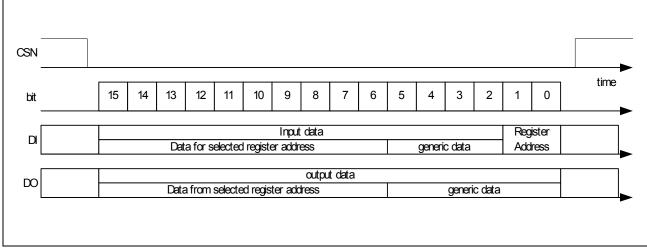


Figure 4 SPI structure

4.3.3 SPI bit definitions

4.3.3.1 Control - word

Table 1Input (Control) Data Register

Bit	CtrlReg 00 Lock and Mirror heat control	CtrIReg 01 PWM1 input select	CtrlReg 10 Mirror and Lamp- driver control	CtrIReg 11 PWM2 input select
15	LS1ON	HS7sel1	LS4ON	HS7sel2
14	HS1ON	HS8sel1	HS4ON	HS8sel2
13	LS2ON	HS9sel1	LS5ON	HS9sel2
12	HS2ON	HS10sel1	HS5ON	HS10sel2
11	LS3ON	HS11sel1	LS6ON	HS11sel2
10	HS3ON	LS1sel1	HS6ON	LS1sel2
9	HS7ON	LS2sel1	HS8ON	LS2sel2
8	Testmode	LS3sel1	HS9ON	LS3sel2
7	Testmode	OpL7ON	HS10ON	OpL89ON
6	Testmode	Testmode	HS110N	OpL1011ON
	-	Address - inde	pendent data	
5	IS_2	IS_2	IS_2	IS_2
4	IS_1	IS_1	IS_1	IS_1
3	IS_0	IS_0	IS_0	IS_0
2	SRR	SRR	SRR	SRR
		Address	s - bits	•
1	RA_1 = 0	RA_1 = 0	RA_1 = 1	RA_1 = 1
0	RA_0 = 0	RA_0 = 1	RA_0 = 0	RA_0 = 1

Note: Testmode-bits must be set to L for normal operation

Table 2 Co	ontrol bit	definiti	ons						
Control Bit	Defini	tion							
LSxON		low-side switch no. x is turned ON (OFF) if this bit is set to HIGH (LOW)							
HSxON	-	high-side switch no. x is turned ON (OFF) if this bit is set to HIGH (LOW)							
xsel1	power	switch	x is sele	cted to be switched by the PWM1 input.					
xsel2	power	switch	x is sele	cted to be switched by the PWM2 input					
OpL7ON		•		open-load detection on output 7 is switched to HIGH (LOW)					
OpL89ON	•	the pull-up currents for open-load detection on outputs 8 and 9 are switched on (off) if this bit is set to HIGH (LOW)							
OpL1011ON		the pull-up currents for open-load detection on outputs 10 and 11 are switched on (off) if this bit is set to HIGH (LOW)							
IS_x	the output for the current sense multiplexer is selected by these bits:								
	IS_2	IS_1	IS_0	_0 Power stage selected for current sens					
	0	0	0	HS1					
	0	0	1	HS2					
	0	1	0	HS3					
	0	1	1	HS4					
	1	0	0	HS7					
	all othe	ers	·	no output selected ($I_{ISO} = 0$)					
SRR	status	Status Register Reset. If set to high, the error bits of the selected status register are reset after transmission of the data in the next SPI frame (see <fett>Section 4.3.4)</fett>							
RA_x	Regist curren	Register Address, selects the control-register address for the current SPI transmission and the status-register address for the next SPI transmission							

Table 2Control bit definitions

4.3.3.2 Diagnosis

Table 3 Output (Status) Data Register

Bit	StatReg 00 Lock and Mirror heat overload	StatReg 01 Lock and Mirror heat open load	StatReg 10 Mirror and Lamp- driver overload	StatReg 11 Mirror and Lamp- driver open load
	valid for input data RA = 00	valid for input data RA = 01	valid for input data RA = 10	valid for input data RA = 11
15	LS1OvL	LS1OpL	LS4OvL	LS4OpL
14	HS1OvL	n.c.	HS4OvL	n.c.
13	LS2OvL	LS2OpL	LS50vL	LS5OpL
12	HS2OvL	n.c	HS5OvL	n.c.
11	LS3OvL	LS3OpL	LS6OvL	LS6OpL
10	HS3OvL	n.c.	HS6OvL	n.c.
9	HS7OvL	HS7OpL	HS8OvL	HS8OpL
8	n.c.	n.c.	HS90vL	HS9OpL
7	n.c.	n.c.	HS10OvL	HS10OpL
6	n.c.	n.c.	HS11OvL	HS11OpL
		Address - indepe	endent data	
5	PSF	PSF	PSF	PSF
4	TSD	TSD	TSD	TSD
3	TW	TW	TW	TW
		Error Fla	ags	
2	EF_11	EF_11	EF_11	EF_10
1	EF_10	EF_10	EF_01	EF_01
0	EF_01	EF_00	EF_00	EF_00
Note	e: n.c. bits are fixed L	OW		

Table 4	Status bit definitions
Status Bit	Definition
LSxOvL	Low-Side switch Over Load. Set to HIGH if low-side switch no. x is shut down due to overcurrent or over temperature
HSxOvL	High-Side switch Over Load. Set to HIGH if high-side switch no. x is shut down due to overcurrent or over temperature
LSxOpL	Low-Side switch open load. Set to HIGH if open load (undercurrent) is detected in low-side switch x
HSxOpL	High-Side switch Open Load. Set to HIGH if open load is detected in high- side switch x
PSF	Power Supply Fail. Set to HIGH if the Voltage at the Vs pin is below the Vs under-voltage threshold or above the Vs over-voltage threshold
TSD	one or more powerstages are shut down due to over temperature
тw	one or more powerstages have reached the warning temperature
EF_xy	Error Flag for StatReg xy. Set to HIGH if any bit is set to HIGH StatReg xy
n.c.	not connected. These bits may be used for test-mode purposes. They are set to fixed LOW in normal operation

Table 4Status bit definitions

4.3.4 Status Register Address selection and Reset

The SPI is using a standard shift-register concept with daisy-chain capability. Any data transmitted to the SPI will be available to the internal logic part at the end of the SPI transmission (CSN L -> H). To read a specific register, the address of the register is sent by the master to the SPI in a first SPI frame. The data that corresponds to this address is transmitted by the SPI DO during the following (second) SPI frame to the master. The default address for Status Register transmission after Power-ON Reset is 00.

The Status-Register-Reset command-bit is executed after the next SPI transmission. The three bits RA_0, RA_1 and SRR act as command to read and reset (or not reset) the addressed Status-Register. This is also explained in **Figure 5**.

The TSD status bit is not part of the adressable data but of the address independent data. When any of the status registers is reset, the TSD bit is reset, too.

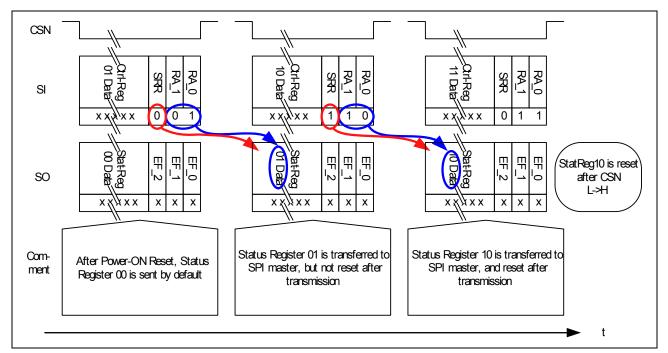


Figure 5 Status Register Addressing and Reset

4.3.4.1 Error-Flag

In addition to the 16 bits transferred from the TLE 7201R to the SPI master, an additional Error Flag (EF) is transmitted at the DO pin. The EF status is shown on the DO pin after CSN H->L, before the first rising edge at CLK, as shown in **Figure 6**.

The Error flag is set to H if any of the Status Registers contains an error message (i.e. $EF = EF_{00}$ or EF_{01} or EF_{10} or EF_{11})

Figure 6 Error Flag transmission on DO during standard SPI transmission (top), or without additional SPI transmission, CLK low (bottom)

4.3.5 Electrical Characteristics

Electrical Characteristics - SPI-timing

8 V < V_S < 20 V; 4.75 V < V_{CC} < 5.25 V; INH = High; all outputs open; -40 °C < T_i < 150 °C; unless otherwise specified

Pos.	Parameter	Sym-	Limit Values			Unit	Conditions
		bol	min.	typ.	max.		
4.3.1	CSN lead time	<i>t</i> lead	100	-	_	ns	1 ¹⁾
4.3.2	CSN lag time	t _{lag}	100	-	-	ns	2 ¹⁾
4.3.3	Fall time for CSN, CLK, DI, DO	<i>t</i> f	-	_	25	ns	3 ¹⁾
4.3.4	Rise time for CSN, CLK, DI, DO	<i>t</i> _r	_	_	25	ns	4 ¹⁾

Electrical Characteristics - SPI-timing

8 V < V_S < 20 V; 4.75 V < V_{CC} < 5.25 V; INH = High; all outputs open; -40 °C < T_i < 150 °C; unless otherwise specified

Pos.	Parameter	Sym-	Lir	nit Val	ues	Unit	Conditions
		bol	min.	typ.	max.		
4.3.5	DI data setup time	t _{SU}	40	-	-	ns	5 ¹⁾
4.3.6	DI data hold time	t _h	40	-	-	ns	6 ¹⁾
4.3.7	DI data valid time	t _V	-	-	50	ns	_1)
4.3.8	DO data setup time	^t DOsetup	0	-	60	ns	7 and 8 ¹⁾
4.3.9	DO data hold time	^t DOhold	50	-	-	ns	9 ¹⁾
4.3.10	No-data-time between SPI commands	^t nodata	5	-	-	μs	10 ¹⁾
4.3.11	Clock frequency	ſcl	-	_	2	MHz	1)
4.3.12	Duty cycle of incoming clock at CLK	_	40	-	60	%	_1)

¹⁾ SPI Timing is not subject to production test - specified by design. SPI functional test is performed at 5 MHz CLK frequency. Timing specified with an external load of 30pF at pin [DO].

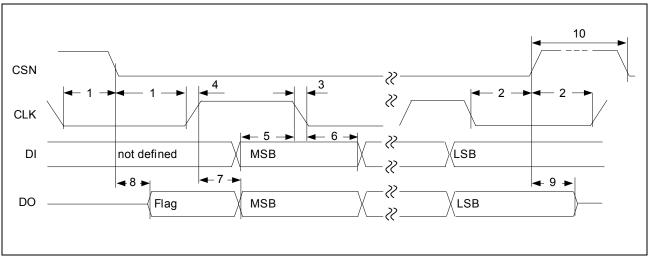


Figure 7 Timing Diagram

4.3.6 **PWM** inputs

The PWM inputs PWM1 and PWM2 are direct power stage control inputs that can be used to switch on and off one or more of the power transistors with a PWM signal supplied to this pin. The setting of the SPI Registers CtrlReg_01 and CtrlReg_11 defines which of the power stages will be controlled by the PWM inputs. If the selection-bits of

power Stage x, xsel1 and xsel2 are LOW, the power stage x is controlled only via the SPI control bit xON. If the selection bit xsel1 is HIGH and the control bit xON is also high, the power stage x is controlled by the PWM1 pin (xsel2 and PWM2, respectively). The behavior is shown in the pricipal schematic and truth table below. In terms of power dissipation due to switching loss, a PWM frequency below 200 Hz is recommended.

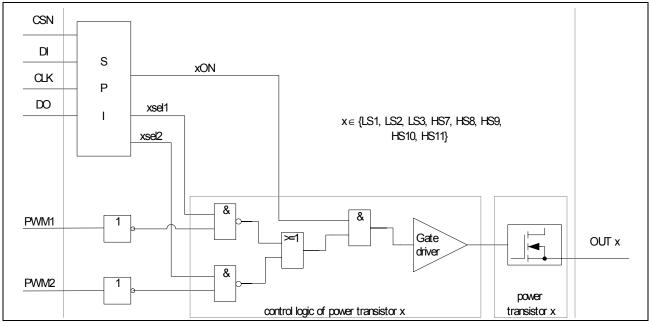
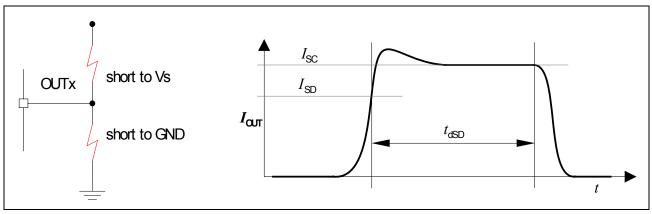


Figure 8 PWM input and SPI control registers

Truth-table for PWM inputs

xON	xsel1	xsel2	PWM1	PWM2	power stage x
0	x	x	x	x	OFF
1	0	0	x	x	ON
1	1	0	0	x	OFF
1	1	0	1	x	ON
1	0	1	x	0	OFF
1	0	1	×	1	ON
1	1	1	1	x	ON
1	1	1	×	1	ON
1	1	1	0	0	OFF


4.4 **Power-Outputs 1-6 (Bridge Outputs)**

4.4.1 **Protection and Diagnosis**

4.4.1.1 Short Circuit of Output to Ground or Vs

The low-side switches are protected against short circuit to supply and the high-side switches against short to GND.

If a switch is turned on and the current rises above the shutdown threshold I_{SD} for longer than the shutdown delay time t_{dSD} , the output transistor is turned off and the corresponding diagnosis bit is set. During the delay time, the current is limited to I_{SC} as shown in **Figure 9**.

Figure 9 Short circuit protection

The delay time ia relatively short (typ. $25 \ \mu$ s) to limit the energy that is dissipated in the device during a short circuit. This scheme allows high peak-currents as required in motor-applications.

The output stage stays off and the error bit set until a status register reset is sent to the SPI or a power-on reset is performed.

4.4.1.2 Cross-Current

If for instance HS1 is ON and LS1 is OFF, you can turn OFF HS1 and turn ON LS1 with the same SPI command. To ensure that there is no overlap of the switching slopes that would lead to a cross current, the dead-time H to L and L to H is specified.

In the control registers, it is also possible to turn ON high- and low-side switches of the same half-bridge (e.g. LS1ON = H and HS1ON = H). To prevent a cross-current through the bridge, such a command is not executed. Instead, both switches are turned OFF and the Over-Load bit is set High for both switches (e.g. LS1OvL = H and HS1OvL = H).