imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

8 Channel Fixed Frequency Constant Current Control With Current Profile Detection

Automotive Power

Never stop thinking

Table of Contents

Table of Contents

	Table of Contents	. 2
1	Overview	. 4
1.1	Features	. 4
1.2	Applications	. 5
1.3	General Description	. 5
1.3.1	Direct PWM Mode Operation	. 5
1.3.2	Constant Current Mode Operation	. 6
2	Block Diagram	10
3	Pin Configuration	11
3.1	Pin Assignment	
3.2	Pin Definitions and Functions	
4	General Product Characteristics	15
4.1	Maximum Ratings	
4.2	Functional Range	
4.3	Thermal Resistance	
5	Functional Description and Electrical Characteristics	
5 .1	Supply and Reference	
5.2	Input / Output	
5.3	Diagnostics	
5.3.1	On-State Diagnostics	
5.3.2	Off-State Diagnostics	
5.4	Output Driver	
5.5	Current Control	
5.6	Current Feedback Registers	
5.7	Direct PWM control	
5.7.1	Selecting the Frequency of Operation	
5.7.2	Selecting the Duty Cycle	
5.8	Current Profile Detection	31
5.8.1	Zone 1	33
5.8.2	Zone 2	33
5.8.3	Zone 3	33
5.8.4	Current Profile Time out & Detection Interrupted	
5.9	Serial Peripheral Interface (SPI)	
5.9.1	SPI Signal Description	
5.9.2	SPI Message Structure	
5.9.2.1	SPI Message #0 - IC Version / Manufacturer	
5.9.2.2	SPI Message #1 - Control Method and Fault Mask Configuration	
5.9.2.3	SPI Message #2 - Diagnostic Configuration (channel 0-3)	
5.9.2.4	SPI Message #3 - Diagnostic Configuration (channel 4-7)	
5.9.2.5 5.9.2.6	SPI Message #4 - Diagnostic Read (channel 0-3)	
5.9.2.7	SPI Message #6 - PWM Offset (channel 0-3)	
5.9.2.8	SPI Message #7 - PWM Offset (channel 4-7)	
5.9.2.9	SPI Message #8 - Main Period Set	
5.9.2.10	SPI Message #9 - Control Variable Set (KP and KI)	
5.9.2.11	SPI Message #10 - Current and Dither Amplitude Set	
5.9.2.12	SPI Message #11 - Dither Period Set	

Table of Contents

5.9.2.13 5.9.2.14 5.9.2.15 5.9.2.16 5.9.2.17 5.9.2.18 5.9.2.19 5.9.2.20	SPI Message #12 - Max / Min Current Read SPI Message #13 - Average Current Read Over Dither Period SPI Message #14 - Autozero Trigger / Read SPI Message #15 - PWM Duty Cycle SPI Message #16 - Current Profile Detection Setup 1 SPI Message #17 - Current Profile Detection Setup 2 SPI Message #18 - Current Profile Detection Feedback SPI Message #19 - Read Generic Flag Bits	60 62 64 66 68 70
6 6.1	Application Information Second S	74 74
7	Package Outlines	75
8	Revision History	77

8 Channel Fixed Frequency Constant Current Control With Current Profile Detection

TLE8242-2

1 Overview

1.1 Features

- · Low side constant current control pre-driver integrated circuit
- Eight independent channels
- Output current programmable with 11 bit resolution
 - Current range = 0 to 1.2A (typ) with a 0.2 Ω sense resistor
 - Resolution = 0.78125 mA/bit (typ) with a 0.2 Ω sense resistor
 - +/- 2% full scale error over temperature when autozero is used
- Programmable PWM frequency via SPI from approximately 10 Hz to 4 kHz (typ)
- Programmable KP and KI coefficients for the PI controller for each channel
- Programmable superimposed dither
 - Dither programmed by setting a dither step size and the number of PWM periods in each dither period
 - Programmed via the SPI interface
 - The dither for each channel can be programmed independently
- Programmable synchronization of the PWM control signals
 - Phase delay time set via the SPI interface
 - Synchronization initiated via signal at the PHASE_SYNC input pin
 - Channels within one device and between multiple devices can be synchronized
- · Each channel can be configured to for constant current control or for direct PWM control via SPI
- In Direct PWM mode, a current profile detection function is engaged
 - Verifies solenoid armature movement
 - Profile characteristics programmed via SPI
 - Pass / Fail Status can be read via SPI
- Interface and Control
 - 32 Bit SPI (Serial Peripheral Interface) Slave only
 - ENABLE pin to disable all channels or freeze all channels
 - Active low RESET_B pin resets internal registers to their default state and disables all channels
 - Open drain FAULT pin can be programmed to transition low when various faults are detected
 - 5.0V and 3.3V logic compatible I/O
- Protection
 - Over current shutdown monitored at POSx pin
 - Programmable over current threshold
 - Programmable over current delay time
 - Programmable over current retry time
 - Battery pin (BAT) overvoltage shutdown

Туре	Package	Marking		
TLE8242-2	PG-LQFP-64	TLE8242-2L		

PG-LQFP-64

Overview

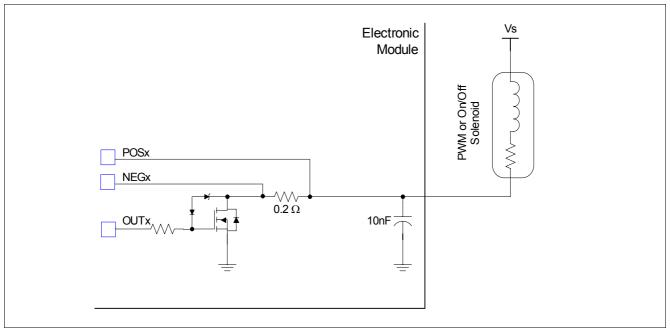
- Diagnostics
 - Over current
 - Open load in on state
 - Open load in off state
 - Short to ground
 - Test complete bit indicates that fault detection test has completed
- Control loop monitor capabilities
 - The average current measurement over the last completed dither cycle for a selected channel can be accessed via SPI
 - The minimum and maximum current measurements over the last completed dither cycle for a selected channel can be accessed via SPI. This data can be used to measure the achieved dither amplitude
 - The duty cycle of each channel can be accessed via SPI
 - The auto zero values used to cancel the offsets of the input amplifiers can be accessed via SPI
- Required External Components:
 - N-Channel Logic level (5V) MOSFET transistor with typical Ron \leq 100 m Ω (e.g. SPD15N06S2L-64)
 - Recirculation diode (ultrafast)
 - Sense resistor (0.2 Ω for 1.2A average output current range)
- Green Product (RoHS compliant)
- AEC Qualified

1.2 Applications

- · Variable Force Solenoids (e.g. automatic transmission solenoids)
- Other constant current solenoids
 - Idle Air Control
 - Exhaust Gas Recirculation
 - Vapor Management Valve
 - Suspension Control

1.3 General Description

The TLE8242G IC is an eight channel low-side constant current control predriver IC. Each channel can be configured to function either in direct PWM mode or in constant current mode by setting the appropriate CM bit in SPI message #1.


1.3.1 Direct PWM Mode Operation

For Direct PWM operation, the POSx and NEGx pins must be connected to the circuit in either of the configurations shown in **Figure 1**. If the sense resistor is included, the load current can be monitored by the microcontroller via a SPI command. The open load in on state fault detection feature is disabled in direct PWM mode.

Note: An external flyback clamp is required in this configuration otherwise the IC may be damaged.

Overview

Figure 1 External Circuit Diagram for Direct PWM Mode Operation

1.3.2 Constant Current Mode Operation

During constant current operation, the POSx and NEGx pins must be connected to the circuit in the configuration shown in **Figure 2**.

Note: An external recirculation diode is required in this configuration otherwise the IC may be damaged.

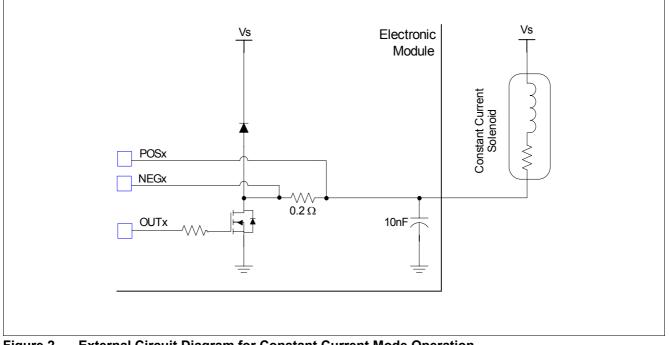


Figure 2 External Circuit Diagram for Constant Current Mode Operation

During constant current operation, the PWM control signal driven at the OUTx pin is controlled by the control loop shown in **Figure 3**. The PWM Frequency is programmed via the SPI message # 8. In this message the main period

Overview

divider, N, can be set to any value between 79 and 2^{14} -1 and the divider M can be set to 32, 64, or 128. In direct PWM mode, the value M can also be set to 512. The equation for calculating the PWM frequency is:

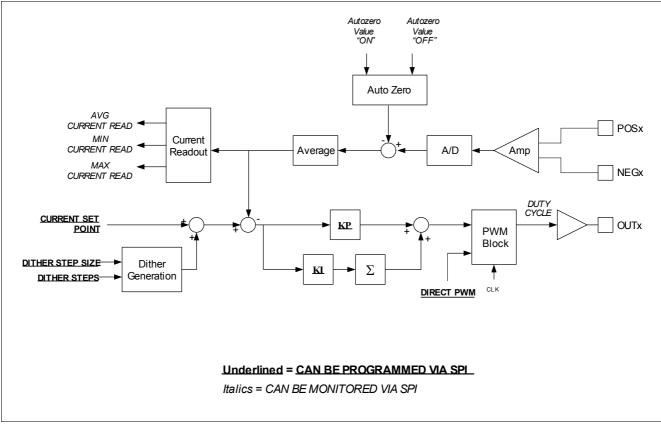
$$F_{\rm PWM} = \frac{F_{\rm CLK}}{M * N}$$

In constant current mode, the value of M is the number of A/D samples within one PWM period. Setting the SAM bit in SPI Message #8 to a "1" will cause the ADC samples immediately following a change in the state of the OUTx pin to be discarded. If the SAM bit is set to '0', all M A/D samples are used in the average calculation.

The 11 bit Current Set Point is programmed via the SPI message #10. The equation for calculating the current setpoint is:

CurrentSetpoint[mA] =
$$\frac{\text{setpoint}(11\text{bit})}{2^{11}} * \frac{320[\text{mV}]}{\text{R}_{\text{SENSE}}[\text{ohm}]}$$

The Proportional coefficient (KP) and the Integral coefficient (KI) of the control loop are programmed in SPI message #9. The KP and KI values should be set to values that result in the desired transient response of the control loop. The duty cycle of the OUTx pin can be calculated from the difference equations:


$$DutyCycle(k) = KP * \frac{Rsense[Ohm]}{0.04 * M * N} * error(k-1)[A] + INT(k)$$
$$INT(k) = KI * \frac{Rsense[Ohm]}{0.04 * M * N} * error(k-1)[A] + INT(k-1)$$

where error is the difference between the commanded average current and measured average current in units of Amps.

where k indicates the integer number of PWM periods that have elapsed since current regulation was initiated.

Overview

Figure 3 Control Loop - Simplified Diagram

Table 1 describes the effect on the integrator of the PI controller of several events.

Table 1 Control Loop Integrator Control

Action to Integrator
Cleared
Cleared
Cleared
Cleared
Remains Operational
Held at current value
Cleared
Remains Operational
Integrator value for first PWM cycle = value from end of
last complete PWM cycle.
Cleared
Cleared
Remains Operational
Remains Operational

Auto Zero

The TLE8242 includes an autozero feature for each channel. When the setpoint of a channel is set to 0 mA and the autozero is triggered by an SPI command, the offset of the amplifiers and analog to digital converters are measured. The time required for the autozero sequence is calculated according to the formula:

$$T_{AZ} = \frac{4 * M * N}{F_{CLK}}$$

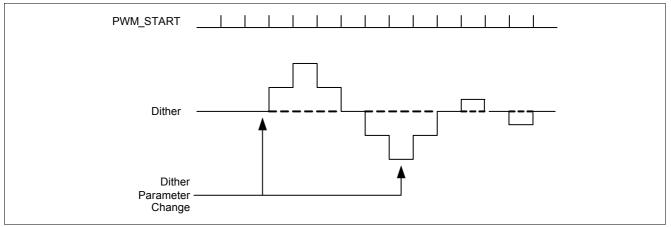
The measured offsets can be read via SPI message #14. these offsets will be subtracted from the A/D converter output as shown in **Figure 3** when the current set point is greater than 0.

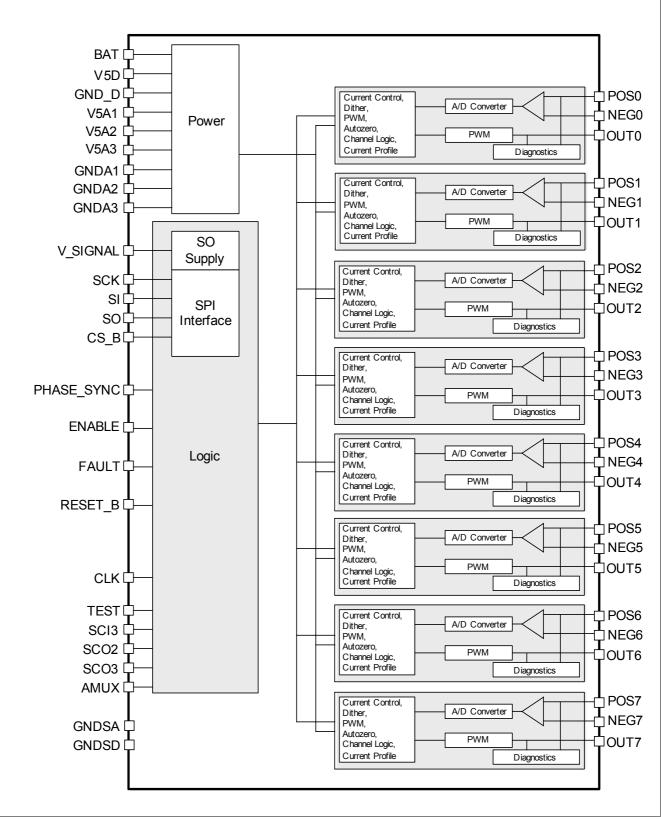
Dither

A triangular dither waveform can be superimposed on the current set point by setting the amplitude and frequency parameters of the dither waveform via SPI messages #10 and #11. See the SPI message section for details.

The first programmed value is the step size of the dither waveform which is the number of bits added or subtracted from the setpoint per PWM period. One LSb of the dither step size is 1/4th the magnitude of the nominal setpoint current value. The second programmed value is the number of steps in one quarter of the dither waveform.

When dither is enabled, a new average current set point will not be activated until the current dither cycle has completed. The dither cycle is completed on the positive zero crossing of the dither waveform. A new dither amplitude setting or a new dither frequency setting will also not be activated until the current dither cycle has completed. See **Figure 4**.




Figure 4 New Dither Values Programmed and the Resulting Waveform Timing

Note: The actual measured dither waveform is attenuated and phase shifted according to the frequency response of the control loop.

Block Diagram

2 Block Diagram

Pin Configuration

3 Pin Configuration

3.1 Pin Assignment



Figure 6 Pin Configuration

3.2 Pin Definitions and Functions

Pin	Symbol	Function
1	NEG0	Channel #0 Negative sense pin; Connect to the "FET" side of the external sense resistor
2	POS0	Channel #0 Positive sense pin; Connect to the "load" side of the external sense resistor
3	NC	Not Connected; do not connect to external supply, ground, or signal
4	V5A1	Supply Voltage; 5V input for analog circuits. An external capacitor is to be connected between this pin and GND_A near this pin
5	(T) SCO2	Test Pin; Used for IC test. Must be connected to GND_D for specified operation of the IC
6	(T) SCO3	Test Pin; Used for IC test. Must be connected to GND_D for specified operation of the IC
7	GND_A1	Ground; ground pin for analog circuits
8	GNDSA	Ground; ground pin for substrate connection near analog circuits

Pin Configuration

Pin	Symbol	Function					
9	GND_A2	Ground; ground pin for analog circuits					
10	(T) AMUX	Test Pin; Used for IC test. Must be connected to GND_D for specified operation of the IC					
11	(T) TEST	Test Pin; Used for IC test. Must be connected to GND_D for specified operation of the IC					
12	V5A2	Supply Voltage; 5V input for analog. An external capacitor is to be connected between this pin and GND_A near this pin					
13	NC	Not Connected; do not connect to external supply, ground, or signal					
14	BAT	Battery Sense Input; for over-voltage detection. Connect through a series resistor (e.g. 1 K ohm) to the solenoid supply voltage. A large electrolytic capacitor (e.g. 47uF) should be placed between the BAT supply and ground					
15	POS4	Channel #4 Positive sense pin ; Connect to the "load" side of the external sense resistor					
16	NEG4	Channel #4 Negative sense pin ; Connect to the "FET" side of the external sense resistor					
17	NC	Not Connected; do not connect to external supply, ground, or signal					
18	NEG5	Channel #5 Negative sense pin; Connect to the "FET" side of the external sense resistor					
19	POS5	Channel #5 Positive sense pin; Connect to the "load" side of the external sense resistor					
20	NC	Not Connected; do not connect to external supply, ground, or signal					
21	OUT4	Gate driver output for channel #4; Connect to the gate of the external MOSFET					
22	OUT5	Gate driver output for channel #5; Connect to the gate of the external MOSFET					
23	NC	Not Connected; do not connect to external supply, ground, or signal					
24	(T) SCI3	Test Pin; Used for IC test. Must be connected to GND_D for specified operation of the IC					
25	NC	Not Connected; do not connect to external supply, ground, or signal					
26	OUT6	Gate driver output for channel #6; Connect to the gate of the external MOSFET					
27	OUT7	Gate driver output for channel #7; Connect to the gate of the external MOSFET					
28	NC	Not Connected; do not connect to external supply, ground, or signal					
29	POS6	Channel #6 Positive sense pin; Connect to the "load" side of the external sense resistor					
30	NEG6	Channel #6 Negative sense pin; Connect to the "FET" side of the external sense resistor					
31	NEG7	Channel #7 Negative sense pin ; Connect to the "FET" side of the external sense resistor					
32	POS7	Channel #7 Positive sense pin; Connect to the "load" side of the external sense resistor					
33	NC	Not Connected; do not connect to external supply, ground, or signal					
	1						

Pin Configuration

Pin	Symbol	Function
34	ENABLE	ENABLE logic input; When this input pin is low all channels are turned off (zero current) or remain in their last state, depending on how the channel is programmed to respond
35	NC	Not Connected; do not connect to external supply, ground, or signal
36	V5D	Supply Voltage; 5V input for digital circuits. An external capacitor is to be connected between this pin and GND_D near this pin
37	PHASE_SYNC	Phase Synchronization Input: Used to synchronize the rising edges of the PWM signal on the OUTx pins for each channel
38	RESET_B	Reset Input; When this input pin is low all channels are turned off and all internal registers are reset to the default state. The part must be held in reset by an external source until all supplies are stable and within tolerance
39	CLK	CLOCK; Main clock input for the chip. A clock input of 20 MHz to 40 MHz is required
40	GND_D	Ground; ground pin for digital circuits
41	GNDSD	Ground; ground pin for substrate connection near digital circuits
42	FAULT	Fault Output Pin; Open drain output pin is pulled low when a fault condition is detected. Certain faults can be masked via SPI
43	V_SIGNAL	Supply Voltage; Supply pin for the SPI SO output and the pull-up current sources of the digital inputs CS_B and RESET_B. An external capacitor must be connected between this pin and GND_D near this pin
44	SO	SPI Serial Data Out
45	SI	SPI Serial Data In
46	SCK	SPI Serial Clock Input
47	CS_B	SPI Chip Select Bar; active low signal
48	NC	Not Connected; do not connect to external supply, ground, or signal
49	POS3	Channel #3 Positive sense pin; Connect to the "load" side of the external sense resistor
50	NEG3	Channel #3 Negative sense pin ; Connect to the "FET" side of the external sense resistor
51	NEG2	Channel #2 Negative sense pin ; Connect to the "FET" side of the external sense resistor
52	POS2	Channel #2 Positive sense pin ; Connect to the "load" side of the external sense resistor
53	NC	Not Connected; do not connect to external supply, ground, or signal
54	OUT3	Gate driver output for channel #3; Connect to the gate of the external MOSFET
55	OUT2	Gate driver output for channel #2; Connect to the gate of the external MOSFET
56	V5A3	Supply Voltage ;5V input for analog. An external capacitor is to be connected between this pin and GND_A near this pin.
57	NC	Not Connected; do not connect to external supply, ground, or signal
58	GND_A3	Ground; ground pin for analog circuits
59	OUT1	Gate driver output for channel #1; Connect to the gate of the external MOSFET

Pin Configuration

Pin	Symbol	Function
60	OUT0	Gate driver output for channel #0; Connect to the gate of the external MOSFET
61	NC	Not Connected; do not connect to external supply, ground, or signal
62	POS1	Channel #1 Positive sense pin; Connect to the "load" side of the external sense resistor
63	NEG1	Channel #1 Negative sense pin; Connect to the "FET" side of the external sense resistor
64	NC	Not Connected; do not connect to external supply, ground, or signal

4 General Product Characteristics

4.1 Maximum Ratings

Absolute Maximum Ratings ¹⁾

 T_j = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Lim	nit Values	Unit	Conditions	
			Min.	Max.			
Voltage	S		-	I	4		
4.1.1	Battery Input (VBAT)	V_{BAT}	-13	50	V	-	
4.1.2	Supply Voltage (logic)	$\begin{array}{c} V_{\rm 5D}, V_{\rm 5A1} \\ V_{\rm 5A2}, V_{\rm 5A3} \\ V_{\rm signal} \end{array}$	-0.3	6.0	V	-	
4.1.3	POSx, NEGx	$V_{\rm pos,}V_{\rm neg}$	-0.3	50	V	-	
4.1.4	POSx-NEGx	$V_{\text{pos-}}V_{\text{neg}}$	-0.2	13	V	-	
4.1.5	OUTx	V _{out}	-0.3	min(V _{5D} + 0.3; 6)	V	-	
4.1.6	RESET_B, SI, SCK, CS_B, CLK, TEST, PHASE_SYNC, ENABLE	V _{io}	-0.3	min(V _{5D} + 0.3; 6)	V	-	
4.1.7	SO, FAULT	V _{io}	-0.3	min(V _{signal} + 0.3; 6)	V	-	
4.1.8	Maximum difference between V5D and V5Ax pins		-500	500	mV	-	
Current	S	J.	1	L	1	L.	
4.1.9	Input Clamp Current ENABLE, PHASE_SYNC, RESET_B, SI, SCK, CS_B, CLK	I _{CLAMP}	5	-5	mA	2)	
Tempera	atures						
4.1.10	Storage Temperature	$T_{\rm stg}$	-65	150	°C	-	
4.1.11	Junction Temperature	Tj	-40	150	°C	-	
ESD Su	sceptibility	,	*			-	
4.1.12	НВМ		-2	2	kV	3)	
4.1.13	CDM all pins		-500	500	V	4)	
4.1.14	CDM corner pins	1	-750	750	V	4)	

2) Current needs to be limited only when maximum voltages are exceeded

3) ESD Susceptibility HBM according to EIA/JESD 22-A 114B

4) ESD Susceptibility CDM according to EIA/JESD22-C101

Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

General Product Characteristics

4.2 Functional Range

 T_j = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Lir	nit Values	Unit	Conditions
			Min.	Max.		
4.2.1	Supply Voltage Range for Normal Operation - VBAT	V _{BAT}	5.5	42	V	-
4.2.2	Supply Voltage Range for Normal Operation - V5D, V5A1, V5A2, V5A3	$V_{\rm V5D} \\ V_{\rm V5A1}, \\ V_{\rm V5A2}, \\ V_{\rm V5A3}$	4.75	5.25	V	-
4.2.3	Supply Voltage Range for Normal Operation -V_SIGNAL	V _{V_SIGNAL}	3.0	5.25	V	-
4.2.4	Clock Frequency	f_{CLK}	20	40	MHz	
4.2.5	PWM Frequency for Normal Operation	f_{PWM}	10	4000	Hz	
4.2.6	Extended PWM Frequency Range	f _{pwm}	10	8000	Hz	Parameter deviations possible
4.2.7	Common Mode Voltage Range for Normal Operation - POSx, NEGx pins.	$V_{\rm pos}, V_{\rm neg}$	0	30	V	-
4.2.8	Extended Common Mode Voltage Range for Operation - POSx, NEGx pins.	$V_{\rm pos}, V_{\rm neg}$	0	42	V	Parameter deviations possible

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

4.3 Thermal Resistance

 T_j = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			ymbol Limit Values Un			Unit	Conditions
			Min.	Тур.	Max.					
4.3.1	Junction to Ambient ¹⁾	R _{thJA}	-	38	-	K/W	2)			

1) Not subject to production test, specified by design.

 Specified R_{thJA} value is according to Jedec JESD51-2, -7 at natural convection on FR4 2s2p board; The Product (chip + Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70μm, 2 x 35 μm Cu).

Functional Description and Electrical Characteristics5Functional Description and Electrical Characteristics

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_A = 25$ °C and the given supply voltage.

5.1 Supply and Reference

The device includes a power-on reset circuit. This feature will disable the channels and reset the internal registers to their default values when the voltage on V5A1, V5A2, V5A3, and/or V5D are below their respective reset thresholds.

The V5D pin and GND_D pin are the supply and ground pins for the digital circuit blocks. The current through these pins contain high frequency components. Decoupling with ceramic capacitors and careful PCB layout are required to obtain good EMC performance.

The V5A1, V5A2, V5A3 pins and GND_A pin are the supply and ground pins for the analog circuit blocks.

The V_SIGNAL pin supplies the SPI output pin (SO) and is the source voltage for the pull up currents on the CS_B and RESET_B pins. V_SIGNAL should be connected to the I/O supply of the microcontroller (3.3V or 5.0V).

The BAT pin is an input pin used to detect over voltage faults. This pin is not a power supply input. A series resistor should be connected between this pin and the solenoid supply voltage for transient protection.

Electrical Characteristics:

V5D = 4.75V to 5.25V, Vbat = 5.5V to 42V, T_j = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Тур.	Max.		
5.1.1	Undervoltage reset (internally generated) V5A1, V5A2, and V5A3	$V_{ m V5A1},\ V_{ m V5A2},\ V_{ m V5A3}$	3.5	_	4.5	V	Internal reset occurs if V5A1 V5A2, or V5A3 is below the undervoltage limit
5.1.2	Undervoltage reset (internally generated) V5D	V _{V5D}	1.0	-	4.5	V	Internal reset occurs if V5D is under the undervoltage limit
5.1.3	V5D supply current	I _{V5D}	-	-	75 40	mA mA	$f_{\rm CLK}$ =40MHz $f_{\rm CLK}$ =20MHz
5.1.4	V5A1 supply current	I _{V5A1}	-	_	20	mA	
5.1.5	V5A2 supply current	I _{V5A2}	-	_	20	mA	
5.1.6	V5A3 supply current	I _{V5A3}	-	_	5	mA	
5.1.7	V_SIGNAL supply current	I_{V_SIGNAL}	-	-	300	μA	V _{SIGNAL} =5.25V SO = Hi-Z state
5.1.8	VBAT current	I _{VBAT}	-	_	80	μA	full operating range
5.1.9	VBAT current - unpowered	I _{VBAT}	-	-	5	μA	V5D=V5Ax=0V, BAT=14V

5.2 Input / Output

All digital inputs are compatible with 3.3 V and 5 V I/O logic levels. The supply voltage for the SPI output SO is the V_SIGNAL pin. All digital inputs are pulled to a known state by a weak internal current source or current sink when not connected. However, unused digital input pins should be connected to ground or to V_SIGNAL (according to the desired functionality) by an external connection or resistor. All input pin weak internal current sources are supplied by the V_SIGNAL pin.

The RESET_B pin is an active low input pin. When this pin is low, all channels are off, and all internal registers are reset to their default states. The device must be held in reset by an external source until all the power supplies have stabilized. The IC contains an internal power on and undervoltage reset which becomes active when V5D, V5A1, V5A2, or V5A3 fall below the undervoltage reset thresholds.

The ENABLE pin is an active high input pin which must be held high for normal operation of the device. When this pin is held low all channels are either turned off or will remain in the last state, depending on how the enable behavior of the channel is programmed via SPI Message #10. The default condition is that all channels are turned off when the ENABLE pin is low.

The CLK pin is the main clock input for the device. The input thresholds are compatible with 3.3 V and 5.0 V logic levels. No synchronization is required between the clock signal connected to the CLK pin and the SPI clock signal (SCK). All internal clock signals of the TLE8242 (PWM signals, A/D sampling, diagnostics, etc.) are generated from the this clock input. Also, this clock is required for the device to accept and respond to SPI messages.

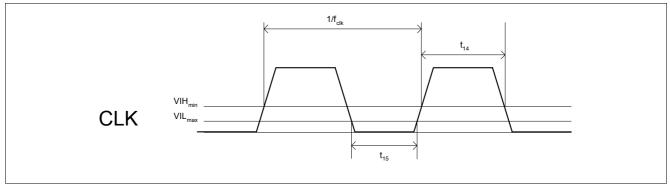
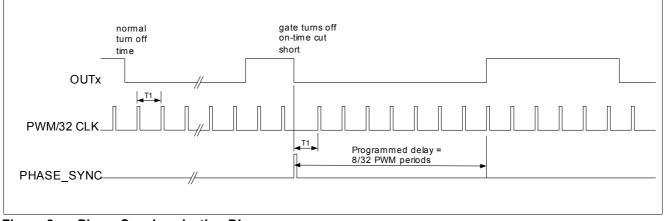


Figure 7 CLK Timing Diagram

The PHASE_SYNC pin is an input pin that can be used by the microcontroller to synchronize the PWM control signals of multiple channels. The desired phase delay between the rising edge of the signal applied to the PHASE_SYNC pin and the rising edge of the PWM signal of each channel can be programmed independently via SPI message #6. The equation for calculating the offset is:


$$T_{offset} = \frac{PhaseSynchOffset}{32 * F_{PWM}}$$

Each time a pulse is received on the PHASE_SYNC pin, the IC will latch a bit which is reported via the response to SPI message #19. (See SPI interface section for bit/message location.) This latch is cleared when the message is read.

Note: The PWM periods are restarted when a rising edge is detected on the PHASE_SYNC pin. A periodic pulse train on this pin will disturb the current regulation.

Note: After exiting the reset state, a pulse is needed on the PHASE_SYNC pin in order to synchronize the PWM periods of the channels

Figure 8 Phase Synchronization Diagram

The TEST, SCI3, SCO2, SCO3, and AMUX pins are used during IC level test. These pins should be connected directly to ground for normal device operation.

The FAULT pin is an open drain output pin. This pin will be pulled low by the device when an unmasked fault has been detected. The fault masks are programmed via SPI message #1.

Electrical Characteristics:

V5D = 4.75V to 5.25V, Vbat = 5.5V to 42V, T_j = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions	
			Min.	Тур.	Max.			
5.2.1	Logic input low voltage	V_{ILMAX}	-	-	0.8	V		
5.2.2	Logic input high voltage	V _{IHMIN}	2.0	-	-	V		
5.2.3	Logic output low voltage	V _{OLMAX}	-	-	0.2	V	<i>I</i> _L =200μA	
5.2.4	Logic output high voltage	V _{OHMIN}	0.8*V_ SIGNAL	-	-	V	<i>I</i> _L =-200μA	
5.2.5	Pull down digital input (SI, CLK, SCK, PHASE_SYNC, ENABLE)	I _{pd}	10	-	50	μA	V _{in} =V_SIGNAL	
5.2.6	Pull up digital input (CS_B, RESET_B)	I _{pu}	-50	-	-10	μA	V _{in} =0V (Current drain from V_SIGNAL)	
5.2.7	Fault pin voltage	V _{fault.low}	-	-	0.4	V	Active state; I _{fault} =2mA	
5.2.8	Fault pin current	$I_{\rm fault,max}$	2.0	-		mA	Active state; V _{fault} =0.4V	
5.2.9	CLK high time (rise 2.0V to fall 2.0V)	<i>t</i> ₁₄	8	-	-	ns		
5.2.10	CLK low time (fall 0.8V to rise 0.8V)	t ₁₅	8	-	-	ns		

5.3 Diagnostics

The TLE8242 includes both on-state and off-state diagnostics. On-state diagnostics are active when the OUTx pin is driven high and off-state diagnostics are active when the OUTx pin is driven low. A detected fault can be used to activate the open drain FAULT pin on the IC. This pin can be used to interrupt the microcontroller when a fault is detected. Certain faults can be prevented from activating the FAULT pin by setting the fault mask register in SPI message #1.

Once a fault is detected it is latched into the respective fault register. The microcontroller can access the fault registers by SPI messages #4, #5, and #19.

If the RESET_B line transitions high-to-low, a RB_L bit is latched into the Generic Flag Bits register. This register is cleared after it is read from the SPI, and the RB_L bit will not be set again until the next high-to-low transition occurs on the RESET_B pin.

If the ENABLE pin voltage is low, the EN_L bit is latched in the Generic Flag Bits register. The ENL bit is cleared when the ENABLE pin returns to a high state and the Generic Flag Bits register is accessed by SPI message #19.

The diagnostic delay timers for the on-state and off-state diagnostic functions are derived from the master clock signal applied to the pin CLK using a programmable predivider. This predivider is programmable by the DIAG_TMR bits in SPI message #1.

DIAG_TMR1	DIAG_TMR0	Pre-divider	nfault min max	Tested Timer and Fault Detection Timer Period.	
				<i>f_{CLK}</i> =20 MHz	<i>f_{CLK}</i> =40 MHz
0	0	128	10 11	64 μsec	32 µsec
0	1	192	10 11	96 μsec	48 µsec
1	0	128	2 3	12.8 µsec	6.4 μsec
1	1	256	10 11	128 µsec	64 μsec

Table 2Timebase for Diagnostics

$$t_{\text{DIAG}_\text{PERIOD}} = \frac{n_{\text{fault}} * \text{predivider}}{F_{\text{CLK}}}$$

Three unique fault types are detected using 4 different fault bits The fault bit is set to a "1" if the fault is detected.

Table 3Diagnostic Flags / Bits

Fault Type	Abr.	Gate is ON	Gate is OFF
Short to Ground Fault	SG	OL-ON-F reported (=0 in ON/OFF mode)	Bit SG-F
Short to Battery Fault	SB	Bit SB-F	
Open Load Fault	OL	BIT OL-ON-F (=0 in ON/OFF mode)	Bit OL-OFF-F

Note: In order to differentiate between a Short to Ground Failure and an Open Load Failure, the channel must be turned off (setpoint = 0ma).

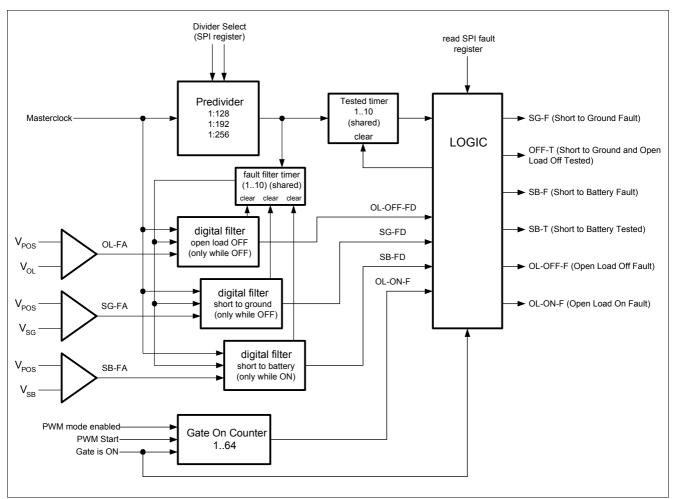
Tested Diagnostic Bits

The tested bits allow the distinction between a a case when a fault bit is not set because the fault is not detected, and the case when a fault bit is not set because the diagnostic test has not completed. For instance, the calculated duty cycle is too low to complete the short to battery test.

Two fault tested bits are defined:

The tested bit is set to 1 when the fault test has completed successfully.

Table 4 Diagnostics Tested Bits / Flags


Tested Type	OUTx High	OUTx Low
Short to Ground and Open load OFF tested		Bit OFF-T
Short to Battery tested	Bit SB-T	

Each fault type can be described by the two bits: FAULT and TESTED.

Table 5 FAULT vs. TESTED Bits Matrix and Interpretation

FAULT	TESTED	Interpretation by microcontroller			
0	0	This fault type has not been tested			
0	1	No Fault - The fault type has been tested and no fault is present			
1	0	This combination cannot occur			
1	1	Fault - This particular fault type has occurred			

Functional Description and Electrical Characteristics

Figure 9 Diagnostic Block Diagram

5.3.1 On-State Diagnostics

When the OUTx pin transitions high, the fault timers are cleared to 0 and the tested timer starts. If the tested timer expires, the Bit SB-T (in the SPI registers #4 and #5) is set to 1. If the OUTx pin transitions low, the tested timer is cleared and then used for the off-state diagnostics.

If the analog SB fault signal (SB-FA) changes to 1, the fault filter timer starts. If the fault filter timer expires, the digitally filtered SB fault signal (SB-FD) is set to one. If SB-FA changes to 0, SB-FD changes immediately to 0 and the filter timer is cleared to 0.

A SB-FD=1 and SB-T=1 switches off the OUTx signal and the SB-F bit in the FAULT register will be set. The OUTx pin remains in the off state until the fault retry PWM period counter expires.

If the SPI message #3 or #4 is read, then the SB-F bit and the SB-FT bit in this register are cleared. Also, the tested timer is cleared to 0.

The Short to Battery (SB) detection functions in both direct PWM and constant current mode. The SG-FD and OL-OFF-FD signals are held to 0 while the OUTx pin is high.

If the TLE8242 IC is in direct PWM mode, Open Load ON detection is disabled (OL-ON-F = 0).

If the TLE8242 IC is not in direct PWM mode and the OUTx pin is high for 64 PWM periods, then the open load fault ON mode fault is detected, and the OL-ON-F bit in the diagnostic register is set. This bit will be cleared when SPI message #3 or #4 is read. If the OUTx pin remains in a high state, then the open load - on fault condition is detected again after another 64 PWM cycles.

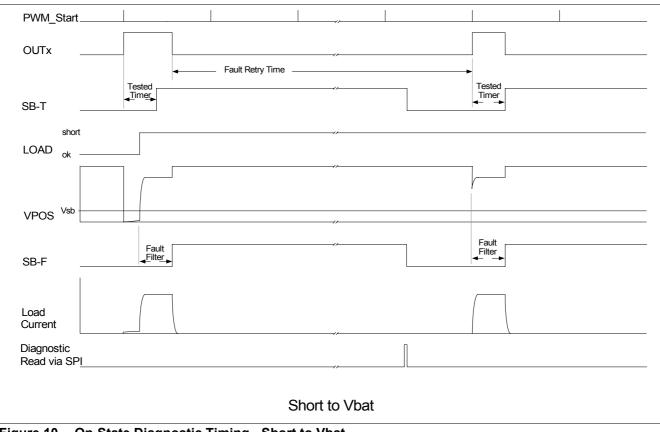
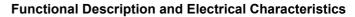



Figure 10 On-State Diagnostic Timing - Short to Vbat

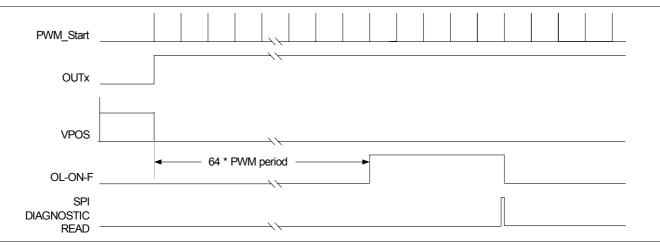


Figure 11 Open - On

5.3.2 Off-State Diagnostics

The off-state diagnostics function in both constant current mode and in direct PWM mode.

When the OUTx pin transitions low, the fault timers are cleared to 0 and the tested timer starts to count up. If the tested timer expires, the Bit OFF-T in the Diagnostic register is set. If a SPI diagnostic register read occurs, the tested timer is cleared to 0 and starts again to count up. If the OUTx pin transitions high, the tested-timer is cleared to zero and then used for on-state diagnostics.

If the analog OL fault signal (OL-FA) changes to 1, the fault filter timer starts to count up. If the fault filter timer expires, the digitally filtered OL fault signal (OL-ON-FD) is set to one.

If OL-FA changes to 0, OL-FD changes immediately to 0 and the fault filter timer is cleared to 0.

If the analog SG fault signal (SG-FA) changes to 1, the fault filter timer is cleared to 0 and starts to count up. If the fault filter timer expires, the digitally filtered SG fault signal (SG-FD) is set to one. If SG-FA changes to 0, SG-FD changes immediately to 0 and the fault filter timer is cleared to 0.

If SG-FD = 1 and the tested timer is expired then the SG-F bit in the FAULT register is set and the OL-OFF-F bit in the FAULT register remains unchanged (independently from OL-OFF-FD).

If SG-FD = 0 and OL-OFF-FD = 1 then the OL-F Bit in the FAULT register is set.

If a SPI fault read occurs, the OFF-T Bit, the SG-F Bit and the OL-F Bit in the SPI registers are cleared to zero (and the timers are cleared to 0).

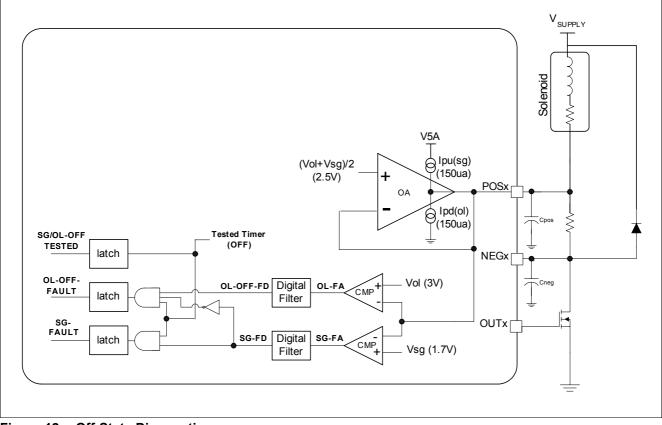


Figure 12 Off-State Diagnostics

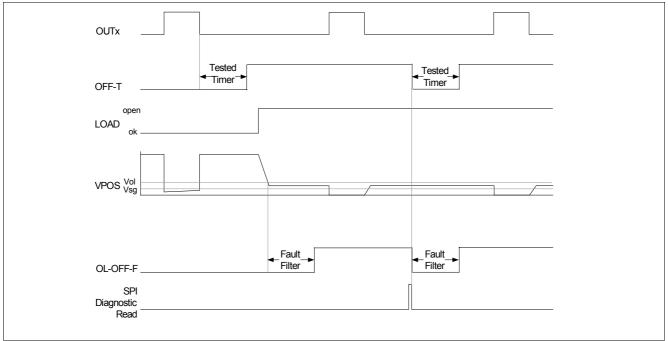


Figure 13 Off-State Diagnostics Timing Diagram - open