imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TLP620X, TLP620-2X, TLP620-4X TLP620, TLP620-2, TLP620-4

HIGH DENSITY A.C. INPUT PHOTOTRANSISTOR OPTICALLY COUPLED ISOLATORS

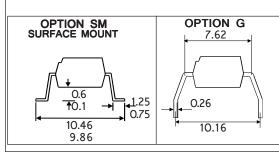
APPROVALS

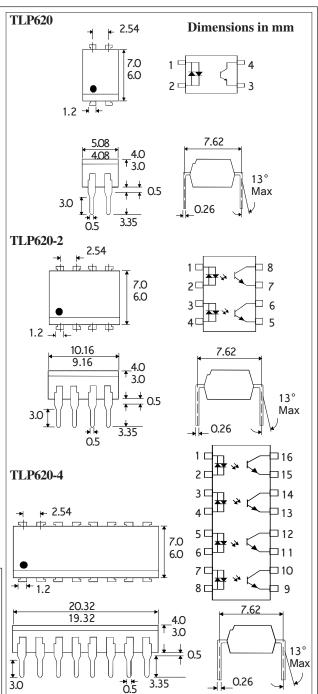
• UL recognised, File No. E91231 Package Code "EE"

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead forms : -STD
 G form
 - SMD approved to CECC 00802

DESCRIPTION


The TLP620, TLP620-2, TLP620-4 series of optically coupled isolators consist of two infrared light emitting diodes connected in inverse parallel and NPN silicon photo transistors in space efficient dual in line plastic packages.


FEATURES

- Options :-10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- High Isolation Voltage $(5.3 \text{kV}_{\text{RMS}}, 7.5 \text{kV}_{\text{PK}})$
- AC or polarity insensitive input
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Telephone sets, Telephone exchangers
- Signal transmission between systems of different potentials and impedances

ISOCOMCOMPONENTSLTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1UD Tel: (01429) 863609 Fax :(01429) 863581

11/11/09

DB92548

ABSOLUTEMAXIMUMRATINGS (25°C unless otherwise specified)

Storage Temperature	-55°Cto+125°C
Operating Temperature	-30°Cto+100°C
Lead Soldering Temperature (1/16 inch (1.6mm) from case for	·10 secs) 260°C

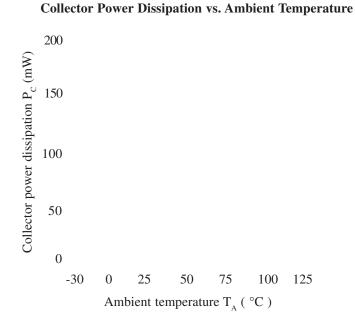
INPUTDIODE

Forward Current	±50mA
Power Dissipation	 70mW

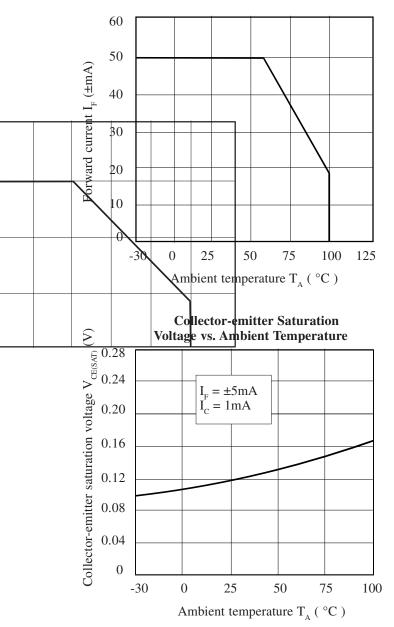
OUTPUTTRANSISTOR

Collector-emitter Voltage BV _{CEO}	_ 55V
Emitter-collector Voltage BV _{ECO}	6V
Collector Current	50mA
Power Dissipation	150mW

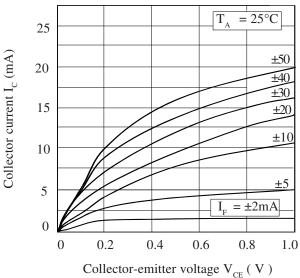
POWERDISSIPATION

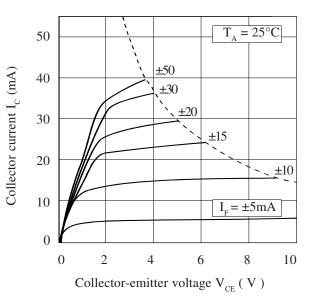

Total Power Dissipation	200mW
(derate linearly 2.67mW/°C above 25°C))

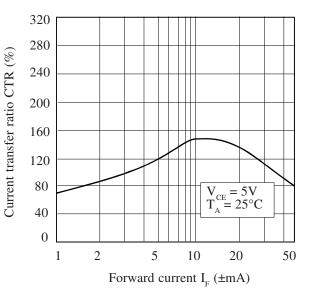
ELECTRICAL CHARACTERISTICS ($\rm T_{A}$ = 25°C Unless otherwise noted)


	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F)	1.0	1.15	1.3	V	$I_F = \pm 10 mA$
Output	$\begin{array}{c} \text{Collector-emitter Breakdown} \left(\text{BV}_{\text{CEO}}\right) \\ (\text{ Note 2 }) \end{array}$ Emitter-collector Breakdown (BV_{\text{ECO}}) \\ \text{Collector-emitter Dark Current} \left(\text{I}_{\text{CEO}}\right) \end{array}	55 6		100	V V nA	$I_c = 0.5 \text{mA}$ $I_E = 100 \mu \text{A}$ $V_{cE} = 20 \text{V}$
Coupled	Current Transfer Ratio (CTR) (Note 2) TLP620, TLP620-2, TLP620-4 CTR selection available GB Collector-emitter Saturation VoltageV _{CE (SAT} GB Input to Output Isolation Voltage V _{ISO}	50 100 30 5300 7500 5x10 ¹⁰	4 3	600 600 0.4 0.4 18 18	% % % V V V V V _{RMS} V _{PK} Ω μs μs	$\pm 5mAI_{F}, 5V V_{CE}$ $\pm 5mAI_{F}, 5V V_{CE}$ $\pm 1mAI_{F}, 0.4V V_{CE}$ $\pm 8mAI_{F}, 2.4mAI_{C}$ $\pm 1mAI_{F}, 0.2mAI_{C}$ See note 1 See note 1 $V_{IO} = 500V \text{ (note 1)}$ $V_{CE} = 2V,$ $I_{C} = 2mA, R_{L} = 100\Omega$

Note 1 Measured with input leads shorted together and output leads shorted together.


Note 2 Special Selections are available on request. Please consult the factory.


Forward Current vs. Ambient Temperature


Collector Current vs. Low Collector-emitter Voltage

Collector Current vs. Collector-emitter Voltage

Current Transfer Ratio vs. Forward Current

