imall

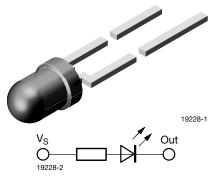
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



TLRE4406

www.vishay.com

Vishay Semiconductors

Resistor LED for 12 V Supply Voltage

DESCRIPTION

These devices are developed for the automotive industry in motor vehicles with 12 V supply voltage.

The TLRE4406 series contains an integrated resistor for current limiting in series with the LED chip. This allows the lamp to be driven from a 12 V source without an external current limiter.

These tinted diffused lamps provide a high luminous intensity.

These LEDs are intended for space critical applications such as automobile instrument panels, switches and others which are driven from a 12 V source.

FEATURES

- With current limiting resistor for 12 V
- · Cost effective: save space and resistor cost
- Standard Ø 3 mm (T-1) package
- High luminous intensity
- Luminous intensity categorized
- Color categorized
- AEC-Q101 qualified
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Status light in cars
- Off/on indicator in cars
- Background illumination for switches
- Off/on indicator in switches

PRODUCT GROUP AND PACKAGE DATA

- Product group: LED
- Package: 3 mm resistor
- Product series: standard
- Angle of half intensity: ± 30°

PARTS TABLE														
PART	COLOR	LUMINOUS INTENSITY (mcd)		at V _S	WAVELENGTH (nm)			at V _S	FORWARD VOLTAGE (V)		at V _S	TECHNOLOGY		
		MIN.	TYP.	MAX.	(V)	MIN.	TYP.	MAX.	(V)	MIN.	TYP.	MAX.	(V)	
TLRE4406	Yellow	63	-	260	12	581	588	594	12	-	10	12	12	AllnGaP on GaAs

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified) TLRE4406								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
Reverse voltage		V _R	13.5	V				
Forward voltage	$T_{amb} \le 65 \ ^{\circ}C$	V _F	16	V				
Power dissipation	$T_{amb} \le 65 \ ^{\circ}C$	Pv	240	mW				
Junction temperature		Tj	100	°C				
Operating temperature range		T _{amb}	- 40 to + 100	°C				
Storage temperature range		T _{stg}	- 55 to + 100	°C				
Soldering temperature	$t \le 5$ s, 2 mm from body	T _{sd}	260	°C				
Thermal resistance junction/ambient		R _{thJA}	150	K/W				

ROHS COMPLIANT HALOGEN

FREE GREEN (5-2008)

1

www.vishay.com

TLRE4406

588

590

592

594

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified) TLRE4406, YELLOW								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Luminous intensity (1)	V _S = 12 V	Iv	63	-	260	mcd		
Dominant wavelength	V _S = 12 V	λ _d	581	588	594	nm		
Peak wavelength	V _S = 12 V	λ _p	-	590	-	nm		
Angle of half intensity	V _S = 12 V	φ	-	± 30	-	deg		
Forward current	V _S = 12 V	l _F	-	10	12	mA		
Breakdown voltage	I _R = 10 μA	V _{BR}	13.5	50	-	V		
Junction capacitance	V _R = 0 V, f = 1 MHz	Cj	-	50	-	pF		

Note

 $^{(1)}$ In one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5.$

LUMINOUS INTENSITY CLASSIFICATION									
GROUP	LUMINOUS INTENSITY (mcd)								
STANDARD	MIN.	MAX.							
V	63	125							
W	100	200							
Х	130	260							

Note

 Luminous flux is tested at a current pulse duration of 25 ms and an accuracy of ± 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each bag (there will be no mixing of two groups in each bag).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one bag.

In order to ensure availability, single wavelength groups will not be orderable.

TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)

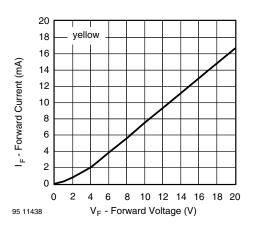


Fig. 1 - Forward Current vs. Forward Voltage

I _{Frei} - Relative Forward Current	1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5											
-	0.5											
- 30 - 10 0 20 40 60 80 100 _{95 11439} T _{amb} - Ambient Temperature (°C)								00				

Fig. 2 - Relative Forward Current vs. Ambient Temperature

COLOR CLASSIFICATION								
	DOM. WAVELENGTH (nm)							
GROUP	YELLOW							
	MIN.	MAX.						
1	581	584						
2	583	586						

Note

3

4

5

6

 Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of ± 1 nm.

585

587

589

591

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

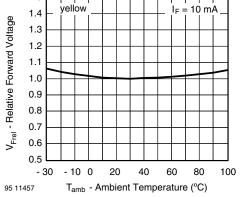


Fig. 3 - Relative Forward Voltage vs. Ambient Temperature

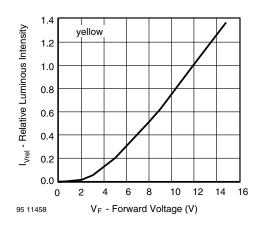


Fig. 4 - Relative Luminous Intensity vs. Forward Voltage

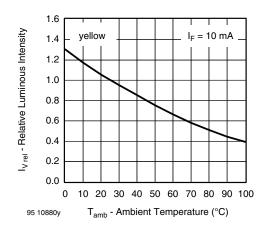


Fig. 5 - Relative Luminous Intensity vs. Ambient Temperature

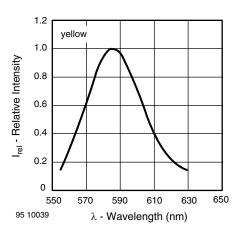
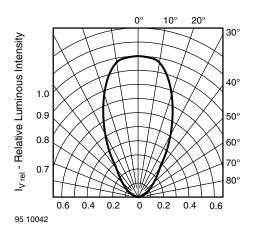
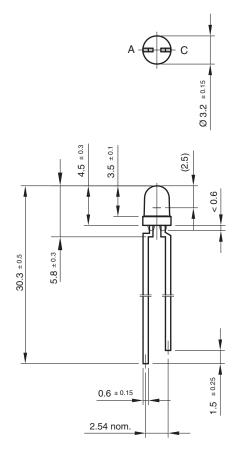
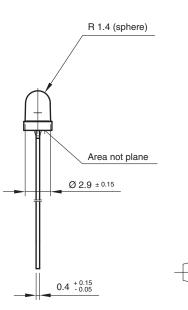


Fig. 6 - Relative Intensity vs. Wavelength




Fig. 7 - Relative Luminous Intensity vs. Angular Displacement


For technical questions, contact: <u>LED@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

technical drawings according to DIN specifications

Drawing-No.: 6.544-5255.01-4 Issue: 7; 25.09.08 ^{95 10913}

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.