

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Dropout Linear Voltage Regulator

TLS710B0

TLS710B0V50

Linear Voltage Regulator

Data Sheet

Rev. 1.0, 2015-04-02

Automotive Power

Table of Contents

1	Overview	3
2	Block Diagram	4
3	Pin Configuration	5
3.1	Pin Assignment PG-DSO-8 EP	5
3.2	Pin Definitions and Functions PG-DSO-8 EP	5
4	General Product Characteristics	6
4.1	Absolute Maximum Ratings	6
4.2	Functional Range	7
4.3	Thermal Resistance	8
5	Block Description and Electrical Characteristics	9
5.1	Voltage Regulation	9
5.2	Typical Performance Characteristics Voltage Regulator	11
5.3	Current Consumption	13
5.4	Typical Performance Characteristics Current Consumption	14
5.5	Enable	15
5.6	Typical Performance Characteristics Enable	16
6	Application Information	17
6.1	Application Diagram	17
6.2	Selection of External Components	17
6.2.1	Input Pin	17
6.2.2	Output Pin	17
6.3	Thermal Considerations	18
6.4	Reverse Polarity Protection	19
6.5	Further Application Information	19
7	Package Outlines	20
8	Revision History	21

TLS710B0V50
TLS710B0

1 Overview

Features

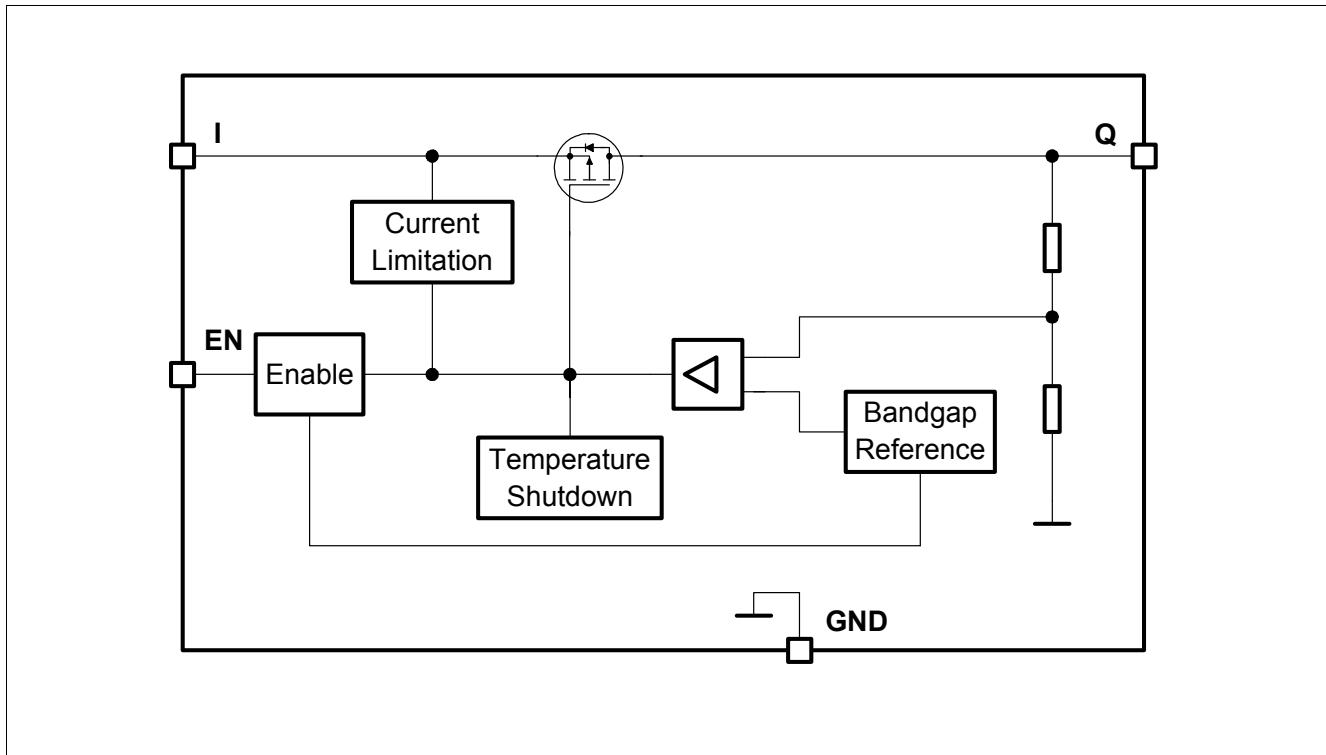
- Wide Input Voltage Range from 4.0 V to 40 V
- Output Voltage 5 V
- Output Voltage Precision $\pm 2\%$
- Output Current up to 100 mA
- Low Current Consumption of 36 μ A
- Very Low Dropout Voltage of typ. 200 mV at 100 mA Output Current
- Stable with Small Output Capacitor of 1 μ F
- Enable
- Overtemperature Shutdown
- Output Current Limitation
- Wide Temperature Range from -40 °C up to 150 °C
- Green Product (RoHS compliant)
- AEC Qualified

PG-DSO-8 EP

Description

The TLS710B0 is a low dropout linear voltage regulator for load current up to 100 mA. An input voltage of up to 40 V is regulated to $V_{Q,nom} = 5$ V with $\pm 2\%$ precision.

The TLS710B0, with a typical quiescent current of 36 μ A, is the ideal solution for systems requiring very low operating current, such as those permanently connected to the battery.


It features a very low dropout voltage of 200 mV, when the output current is less than 100 mA. In addition, the dropout region begins at input voltages of 4.0 V (extended operating range). This makes the TLS710B0 suitable to supply automotive systems with start-stop requirements.

The device can be switched on and off by the Enable feature as described on Chapter [“Enable” on Page 15](#).

In addition, the TLS710B0’s new fast regulation concept requires only a single 1 μ F output capacitor to maintain stable regulation.

The device is designed for the harsh environment of automotive applications. Therefore standard features like output current limitation and overtemperature shutdown are implemented and protect the device against failures like output short circuit to GND, over-current and over-temperature. The TLS710B0 can be also used in all other applications requiring a stabilized 5 V supply voltage.

Type	Package	Marking
TLS710B0EJV50	PG-DSO-8 EP	710B0V50

Block Diagram**2 Block Diagram****Figure 1 Block Diagram TLS710B0EJV50**

Pin Configuration

3 Pin Configuration

3.1 Pin Assignment PG-DSO-8 EP

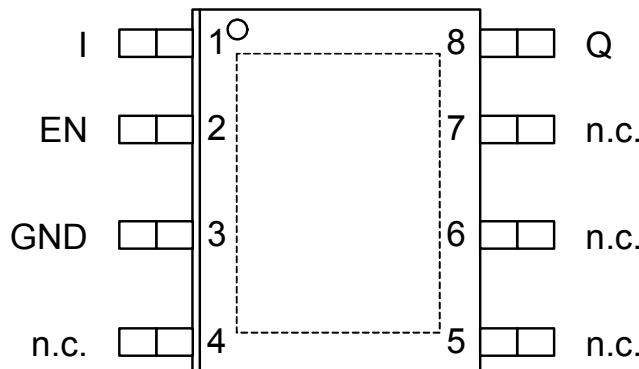


Figure 2 Pin Configuration

3.2 Pin Definitions and Functions PG-DSO-8 EP

Pin	Symbol	Function
1	I	Input For compensating line influences, a capacitor to GND close to the IC terminals is recommended.
2	EN	Enable (integrated pull-down resistor) Enable the IC with high level input signal. Disable the IC with low level input signal.
3	GND	Ground
4, 5, 6, 7	n.c.	Not connected Leave open or connect to GND.
8	Q	Output Block to GND with a capacitor close to the IC terminals, respecting the values given for its capacitance C_Q and ESR in the table “ Functional Range ” on Page 7.
Pad	-	Exposed Pad Connect to heatsink area. Connect with GND on PCB.

General Product Characteristics

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Table 1 Absolute Maximum Ratings¹⁾

T_j = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Input I, Enable EN							
Voltage	V_I, V_{EN}	-0.3	-	45	V	-	P_4.1.1
Output Q							
Voltage	V_Q	-0.3	-	7	V	-	P_4.1.2
Temperature							
Junction Temperature	T_j	-40	-	150	°C	-	P_4.1.3
Storage Temperature	T_{stg}	-55	-	150	°C	-	P_4.1.4
ESD Absorption							
ESD Susceptibility to GND	V_{ESD}	-2	-	2	kV	HBM ²⁾	P_4.1.5
ESD Susceptibility to GND	V_{ESD}	-750	-	750	V	CDM ³⁾	P_4.1.6

1) Not subject to production test, specified by design.

2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF)

3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101

Notes

1. *Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.*
2. *Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.*

General Product Characteristics
4.2 Functional Range
Table 2 Functional Range

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Input Voltage Range for Normal Operation	V_I	$V_{Q,nom} + V_{dr}$	–	40	V	–	P_4.2.1
Extended Input Voltage Range	$V_{I,ext}$	4.0	–	40	V	– ¹⁾	P_4.2.2
Enable Voltage Range	V_{EN}	0	–	40	V	–	P_4.2.3
Output Capacitor's Requirements for Stability	C_Q	1	–	–	μF	– ²⁾	P_4.2.4
Output Capacitor's ESR	$ESR(C_Q)$	–	–	5	Ω	– ³⁾	P_4.2.5
Junction Temperature	T_i	-40	–	150	$^{\circ}\text{C}$	–	P_4.2.6

1) When V_I is between $V_{I,ext,min}$ and $V_{Q,nom} + V_{dr}$, $V_Q = V_I - V_{dr}$. When V_I is below $V_{I,ext,min}$, V_Q can drop down to 0 V.

2) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%

3) Relevant ESR value at $f = 10$ kHz

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

General Product Characteristics

4.3 Thermal Resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

Table 3 Thermal Resistance

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Package Version PG-DSO-8 EP							
Junction to Case ¹⁾	R_{thJC}	–	13	–	K/W	–	P_4.3.1
Junction to Ambient	R_{thJA}	–	46	–	K/W	2s2p board ²⁾	P_4.3.2
Junction to Ambient	R_{thJA}	–	153	–	K/W	1s0p board, footprint only ³⁾	P_4.3.3
Junction to Ambient	R_{thJA}	–	71	–	K/W	1s0p board, 300 mm ² heatsink area on PCB ³⁾	P_4.3.4
Junction to Ambient	R_{thJA}	–	59	–	K/W	1s0p board, 600 mm ² heatsink area on PCB ³⁾	P_4.3.5

1) Not subject to production test, specified by design

2) Specified R_{thJA} value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70 μ m Cu, 2 x 35 μ m Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

3) Specified R_{thJA} value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 1 copper layer (1 x 70 μ m Cu).

Block Description and Electrical Characteristics

5 Block Description and Electrical Characteristics

5.1 Voltage Regulation

The output voltage V_Q is divided by a resistor network. This fractional voltage is compared to an internal voltage reference and drives the pass transistor accordingly.

The control loop stability depends on the output capacitor C_Q , the load current, the chip temperature and the internal circuit design. To ensure stable operation, the output capacitor's capacitance and its equivalent series resistor ESR requirements given in [Table 2 “Functional Range” on Page 7](#) must be maintained. For details see the typical performance graph [“Output Capacitor Series Resistor ESR\(\$C_Q\$ \) versus Output Current \$I_Q\$ ” on Page 12](#). Since the output capacitor is used to buffer load steps, it should be sized according to the application's needs.

An input capacitor C_I is not required for stability, but is recommended to compensate line fluctuations. An additional reverse polarity protection diode and a combination of several capacitors for filtering should be used, in case the input is connected directly to the battery line. Connect the capacitors close to the regulator terminals.

Whenever the load current exceeds the specified limit, e.g. in case of a short circuit, the output current is limited and the output voltage decreases.

The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output continuously short-circuited) by switching off the power stage. After the chip has cooled, the regulator restarts. This oscillatory thermal behaviour causes the junction temperature to exceed the maximum rating of 150°C and can significantly reduce the IC's lifetime.

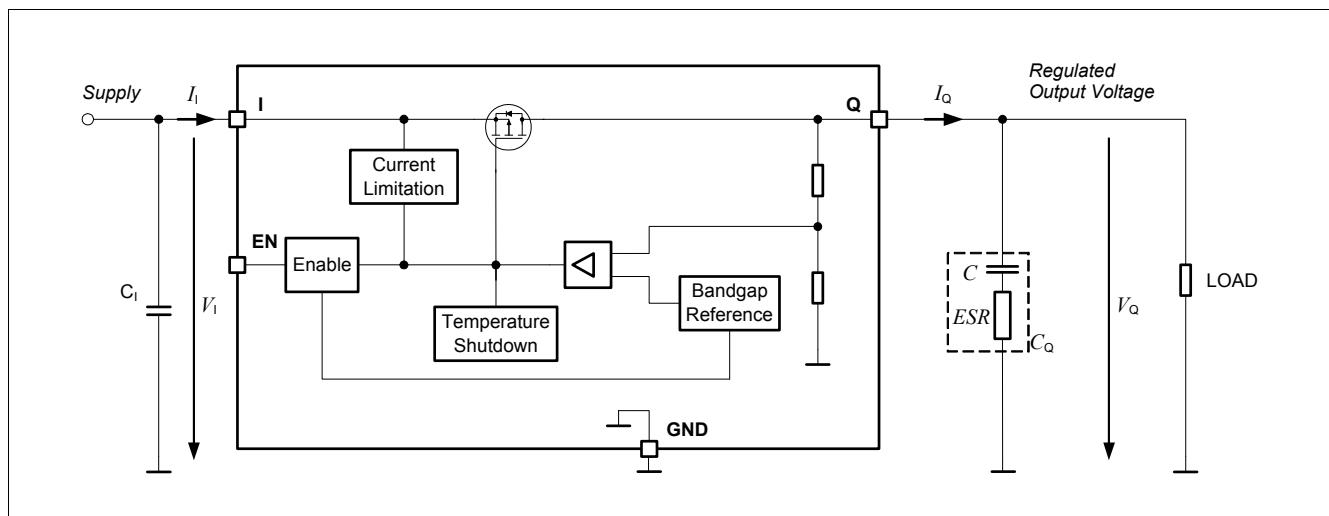


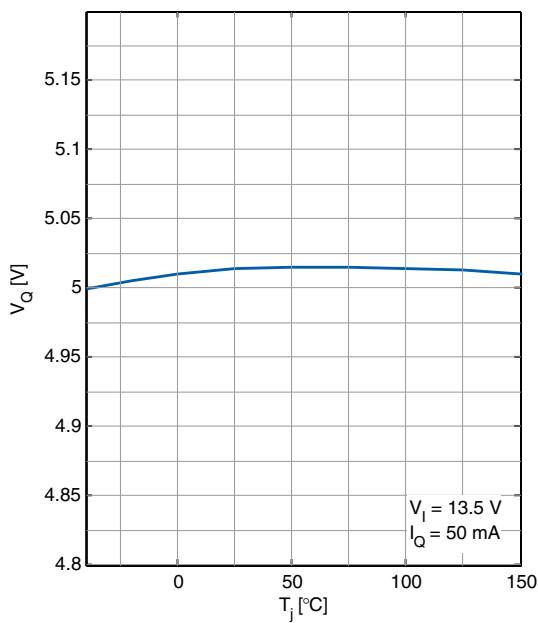
Figure 3 Block Diagram Voltage Regulation

Block Description and Electrical Characteristics
Table 4 Electrical Characteristics Voltage Regulator

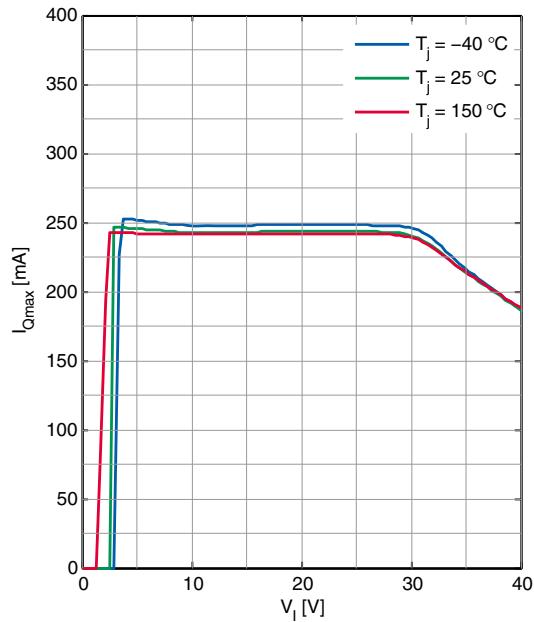
$V_I = 13.5 \text{ V}$; $T_j = -40 \text{ }^\circ\text{C}$ to $+150 \text{ }^\circ\text{C}$; all voltages with respect to ground (unless otherwise specified).
 Typical values are given at $T_j = 25 \text{ }^\circ\text{C}$, $V_I = 13.5 \text{ V}$.

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Output Voltage Precision	V_Q	4.9	5.0	5.1	V	$0.05 \text{ mA} < I_Q < 100 \text{ mA}$ $6 \text{ V} < V_I < 28 \text{ V}$	P_5.1.1
Output Voltage Precision	V_Q	4.9	5.0	5.1	V	$0.05 \text{ mA} < I_Q < 50 \text{ mA}$ $6 \text{ V} < V_I < 40 \text{ V}$	P_5.1.2
Output Current Limitation	$I_{Q,\text{max}}$	101	250	350	mA	$0 \text{ V} < V_Q < 4.8 \text{ V}$ $4 \text{ V} < V_I < 28 \text{ V}$	P_5.1.7
Load Regulation steady-state	$ \Delta V_{Q,\text{load}} $	–	1	25	mV	$I_Q = 0.05 \text{ mA}$ to 100 mA $V_I = 6 \text{ V}$	P_5.1.9
Line Regulation steady-state	$ \Delta V_{Q,\text{line}} $	–	1	25	mV	$V_I = 8 \text{ V}$ to 32 V $I_Q = 5 \text{ mA}$	P_5.1.10
Dropout Voltage ¹⁾ $V_{\text{dr}} = V_I - V_Q$	V_{dr}	–	200	500	mV	$I_Q = 100 \text{ mA}$	P_5.1.11
Power Supply Ripple Rejection ²⁾	$PSRR$	–	60	–	dB	$f_{\text{ripple}} = 100 \text{ Hz}$ $V_{\text{ripple}} = 0.5 \text{ Vpp}$	P_5.1.12
Overtemperature Shutdown Threshold	$T_{j,\text{sd}}$	151	–	200	$^\circ\text{C}$	T_j increasing ²⁾	P_5.1.13
Overtemperature Shutdown Threshold Hysteresis	$T_{j,\text{sdh}}$	–	15	–	K	T_j decreasing ²⁾	P_5.1.14

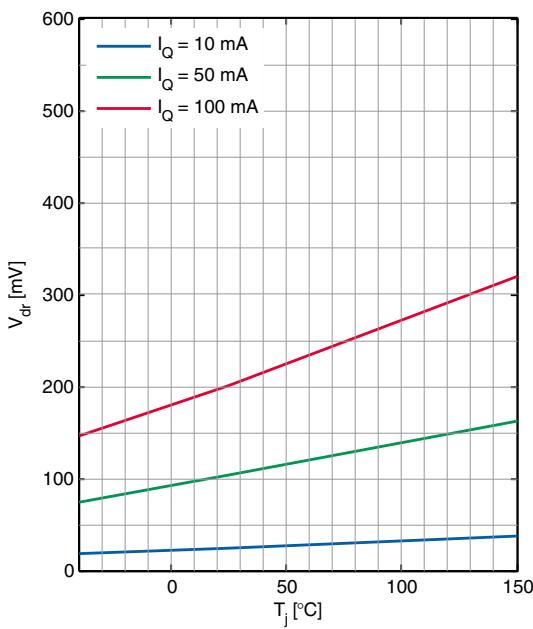
1) Measured when the output voltage V_Q has dropped 100 mV from the nominal value obtained at $V_I = 13.5 \text{ V}$

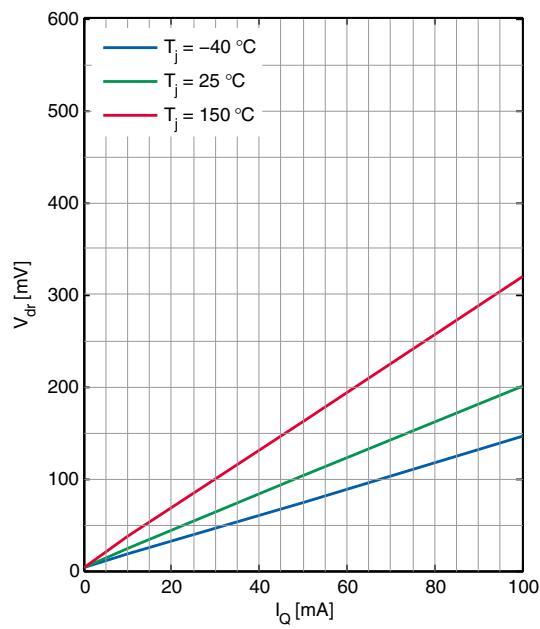

2) Not subject to production test, specified by design

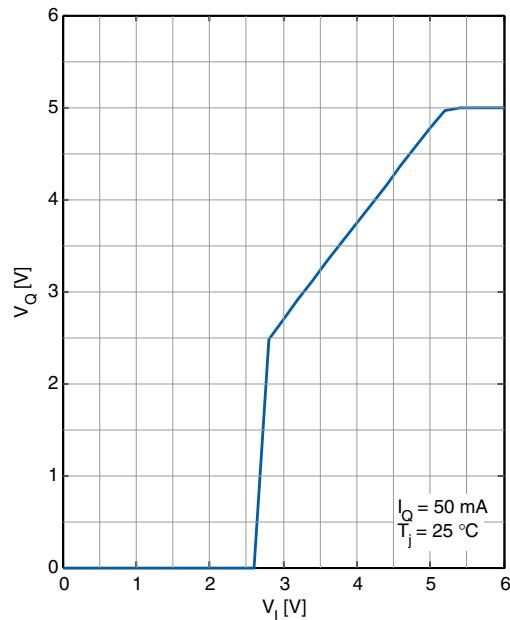
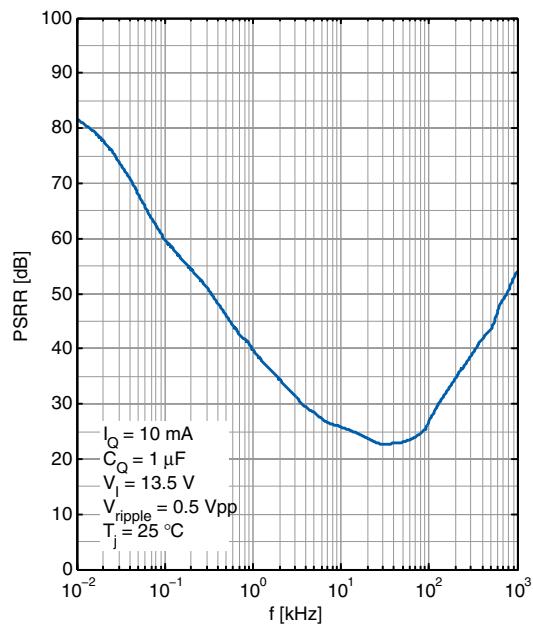
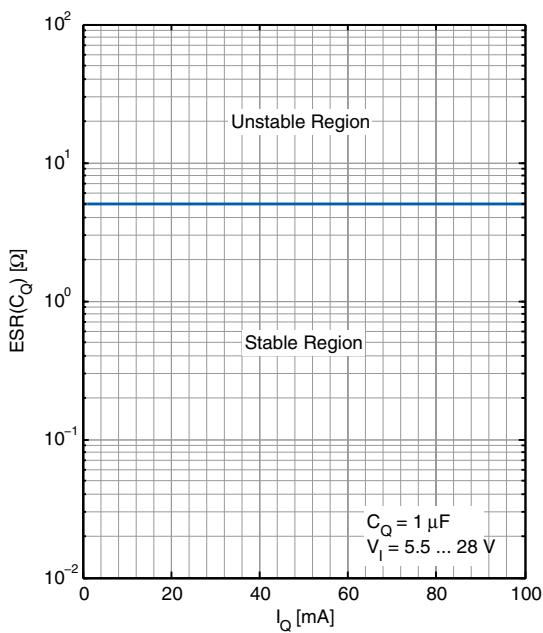
Block Description and Electrical Characteristics


5.2 Typical Performance Characteristics Voltage Regulator

Typical Performance Characteristics


**Output Voltage V_Q versus
Junction Temperature T_j**


**Output Current I_Q versus
Input Voltage V_I**




**Dropout Voltage V_{dr} versus
Junction Temperature T_j**

**Dropout Voltage V_{dr} versus
Output Current I_Q**

Block Description and Electrical Characteristics
**Output Voltage V_Q versus
Input Voltage V_I**

**Power Supply Ripple Rejection $PSRR$ versus
Ripple Frequency f_r**

**Output Capacitor Series Resistor $ESR(C_Q)$ versus
Output Current I_Q**

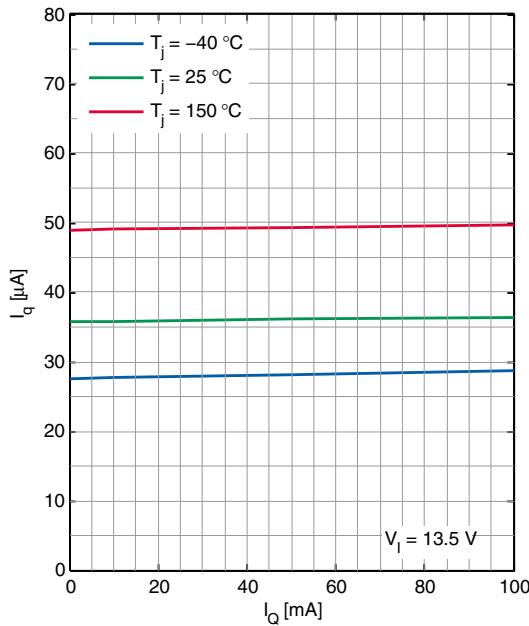
Block Description and Electrical Characteristics

5.3 Current Consumption

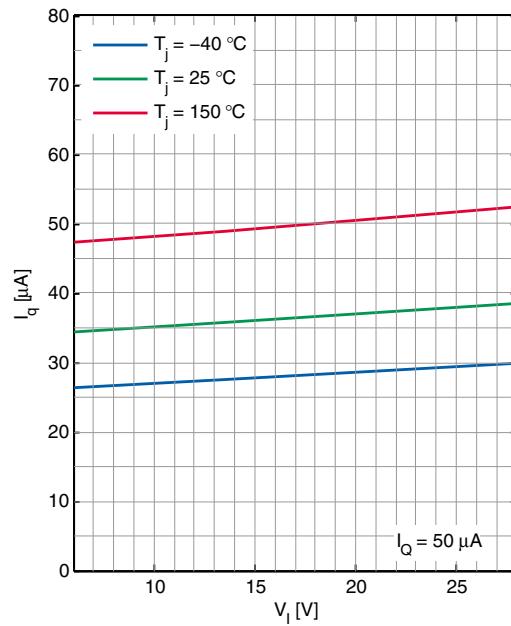
Table 5 Electrical Characteristics Current Consumption

$V_I = 13.5 \text{ V}$; $T_j = -40 \text{ }^\circ\text{C}$ to $+150 \text{ }^\circ\text{C}$ (unless otherwise specified).

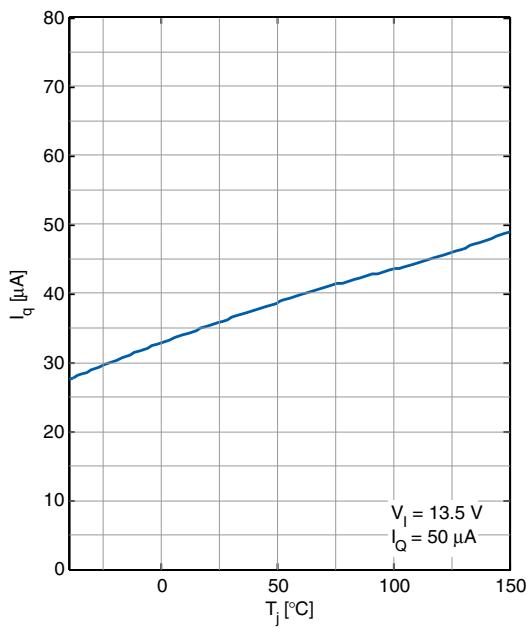
Typical values are given at $T_j = 25 \text{ }^\circ\text{C}$, $V_I = 13.5 \text{ V}$.

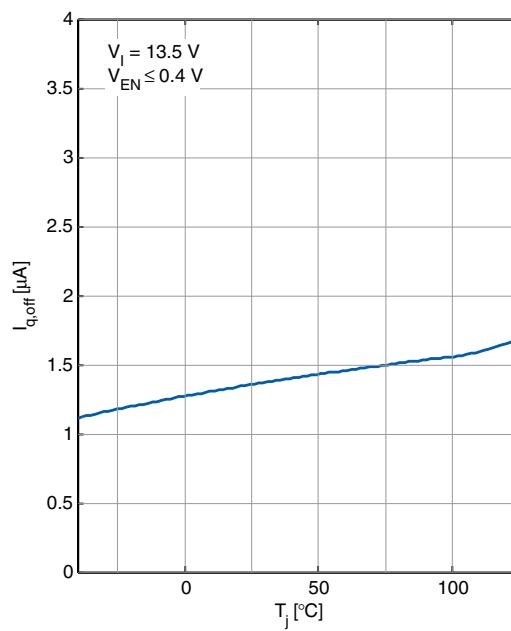

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Current Consumption $I_q = I_I$	$I_{q,\text{off}}$	–	1.5	5	μA	$V_{EN} \leq 0.4 \text{ V}$ $T_j < 105 \text{ }^\circ\text{C}$	P_5.3.1
Current Consumption $I_q = I_I - I_Q$	I_q	–	36	80	μA	$0.05 \text{ mA} < I_Q < 100 \text{ mA}$	P_5.3.2

Block Description and Electrical Characteristics


5.4 Typical Performance Characteristics Current Consumption

Typical Performance Characteristics


Current Consumption I_q versus Output Current I_Q


Current Consumption I_q versus Input Voltage V_I

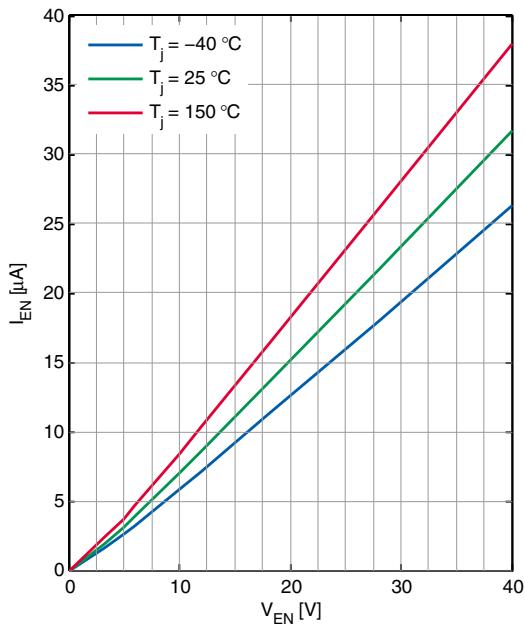
Current Consumption I_q versus Junction Temperature T_j

Current Consumption in OFF mode $I_{q,off}$ versus Junction Temperature T_j

Block Description and Electrical Characteristics

5.5 Enable

The TLS710B0 can be switched on and off by the Enable feature. Connect a HIGH level as specified below (e.g. the battery voltage) to pin EN to enable the device; connect a LOW level as specified below (e.g. GND) to switch it off. The Enable function has a build-in hysteresis to avoid toggling between ON/OFF state, if signals with slow slopes are applied to the input.


Table 6 Electrical Characteristics Enable

$V_i = 13.5 \text{ V}$; $T_j = -40 \text{ }^\circ\text{C}$ to $+150 \text{ }^\circ\text{C}$; all voltages with respect to ground (unless otherwise specified).

Typical values are given at $T_j = 25 \text{ }^\circ\text{C}$, $V_i = 13.5 \text{ V}$.

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Enable Voltage High Level	$V_{EN,H}$	2	–	–	V	V_Q settled	P_5.5.1
Enable Voltage Low Level	$V_{EN,L}$	–	–	0.8	V	$V_Q \leq 0.1 \text{ V}$	P_5.5.2
Enable Threshold Hysteresis	$V_{EN,Hy}$	75	–	–	mV	–	P_5.5.3
Enable Input Current Low Level	$I_{EN,L}$	–	–	5.5	μA	$V_{EN} = 5 \text{ V}$	P_5.5.4
Enable Input Current High Level	$I_{EN,H}$	–	–	22	μA	$V_{EN} < 18 \text{ V}$	P_5.5.5
Enable internal pull-down resistor	R_{EN}	0.9	1.5	2.6	$\text{M}\Omega$	–	P_5.5.6

Block Description and Electrical Characteristics**5.6 Typical Performance Characteristics Enable****Typical Performance Characteristics****Enabled Input Current I_{EN} versus
Enabled Input Voltage V_{EN}**

Application Information

6 Application Information

6.1 Application Diagram

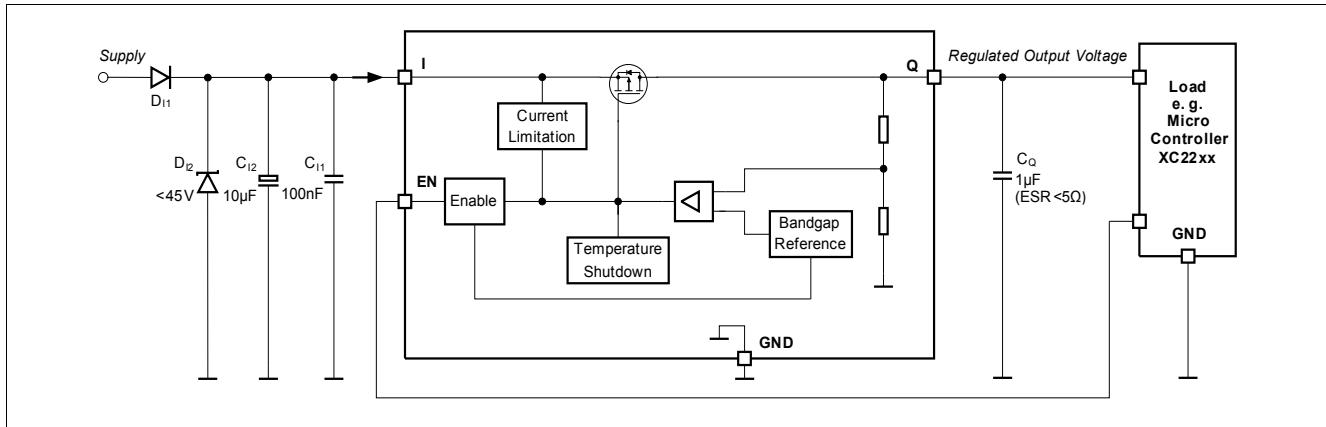


Figure 4 Application Diagram

6.2 Selection of External Components

6.2.1 Input Pin

The typical input circuitry for a linear voltage regulator is shown in the application diagram above.

A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high frequency disturbances imposed by the line e.g. ISO pulses 3a/b. This capacitor must be placed very close to the input pin of the linear voltage regulator on the PCB.

An aluminum electrolytic capacitor in the range of 10 µF to 470 µF is recommended as an input buffer to smooth out high energy pulses, such as ISO pulse 2a. This capacitor should be placed close to the input pin of the linear voltage regulator on the PCB.

An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum rating of the linear voltage regulator and protect the device against any damage due to over-voltage above 45 V.

The external components at the input are not mandatory for the operation of the voltage regulator, but they are recommended in order to protect the voltage regulator against external disturbances and damages.

6.2.2 Output Pin

An output capacitor is mandatory for the stability of linear voltage regulators.

The requirement to the output capacitor is given in [“Functional Range” on Page 7](#). The graph [“Output Capacitor Series Resistor ESR\(C₀\) versus Output Current I₀” on Page 12](#) shows the stable operation range of the device.

TLS710B0 is designed to be stable with extremely low ESR capacitors. According to the automotive requirements, ceramic capacitors with X5R or X7R dielectrics are recommended.

Application Information

The output capacitor should be placed as close as possible to the regulator's output and GND pins and on the same side of the PCB as the regulator itself.

In case of rapid transients of input voltage or load current, the capacitance should be dimensioned in accordance and verified in the real application that the output stability requirements are fulfilled.

6.3 Thermal Considerations

Knowing the input voltage, the output voltage and the load profile of the application, the total power dissipation can be calculated:

$$P_D = (V_I - V_Q) \times I_Q + V_I \times I_q \quad (6.1)$$

with

- P_D : continuous power dissipation
- V_I : input voltage
- V_Q : output voltage
- I_Q : output current
- I_q : quiescent current

The maximum acceptable thermal resistance R_{thJA} can then be calculated:

$$R_{thJA,max} = (T_{j,max} - T_a) / P_D \quad (6.2)$$

with

- $T_{j,max}$: maximum allowed junction temperature
- T_a : ambient temperature

Based on the above calculation the proper PCB type and the necessary heat sink area can be determined with reference to the specification in [“Thermal Resistance” on Page 8](#).

Example

Application conditions:

$$V_I = 13.5 \text{ V}$$

$$V_Q = 5 \text{ V}$$

$$I_Q = 100 \text{ mA}$$

$$T_a = 85 \text{ }^\circ\text{C}$$

Calculation of $R_{thJA,max}$:

$$P_D = (V_I - V_Q) \times I_Q + V_I \times I_q \quad (V_I \times I_q \text{ can be neglected because of very low } I_q)$$

$$= (13.5 \text{ V} - 5 \text{ V}) \times 100 \text{ mA}$$

$$= 0.85 \text{ W}$$

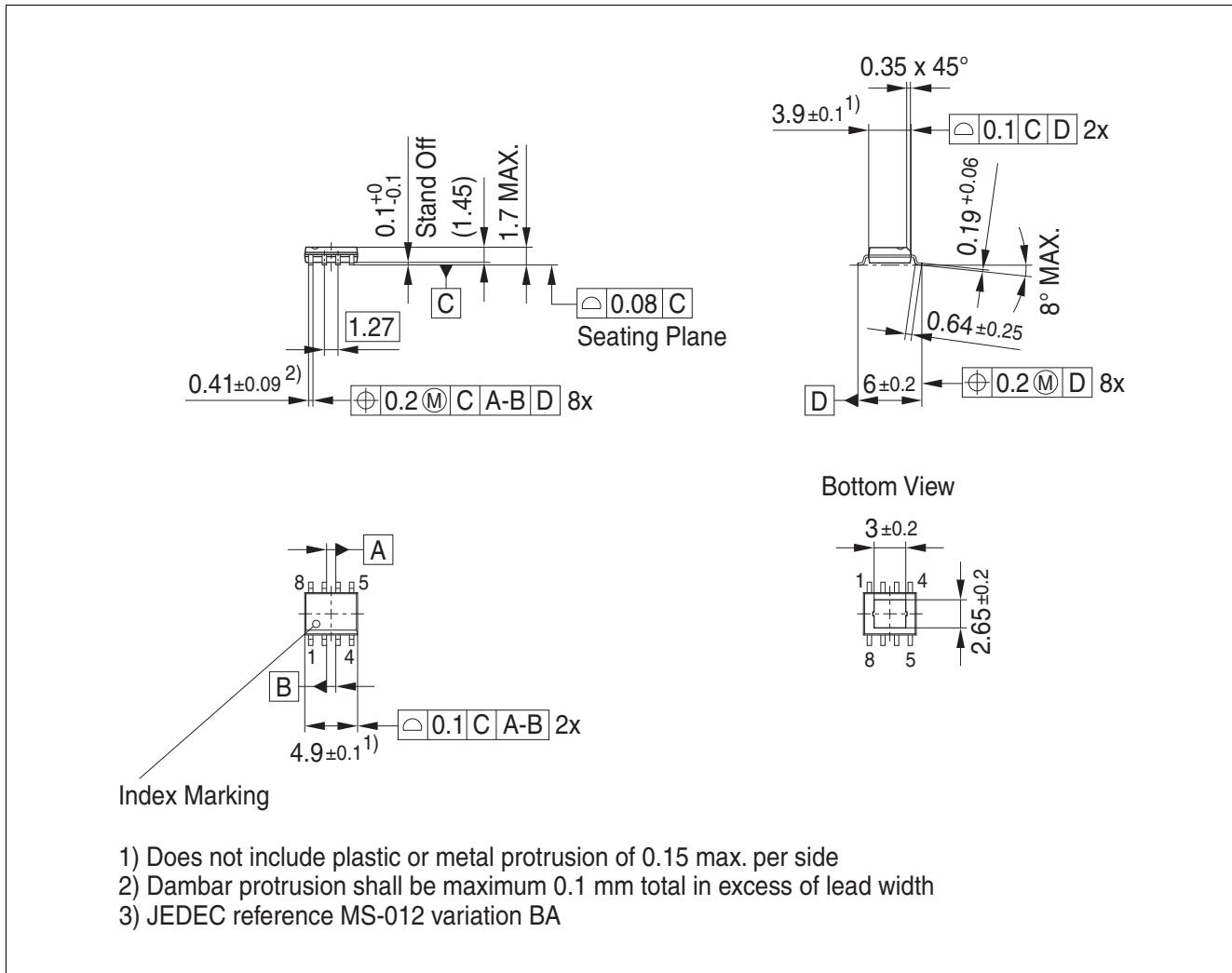
$$R_{thJA,max} = (T_{j,max} - T_a) / P_D$$

$$= (150 \text{ }^\circ\text{C} - 85 \text{ }^\circ\text{C}) / 0.85 \text{ W} = 76.47 \text{ K/W}$$

Application Information

As a result, the PCB design must ensure a thermal resistance R_{thJA} lower than 76.47 K/W. According to **“Thermal Resistance” on Page 8**, at least 300 mm² heatsink area is needed on the FR4 1s0p PCB, or the FR4 2s2p board can be used.

6.4 Reverse Polarity Protection


TLS710B0 is not self protected against reverse polarity faults and must be protected by external components against negative supply voltage. An external reverse polarity diode is needed. The absolute maximum ratings of the device as specified in **“Absolute Maximum Ratings” on Page 6** must be kept.

6.5 Further Application Information

- For further information you may contact <http://www.infineon.com/>

Package Outlines

7 Package Outlines

Figure 5 PG-DSO-8 EP

Revision History**8 Revision History**

Revision	Date	Changes
1.0	2015-04-02	Data Sheet - Initial Version

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, euec™, FCOST™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOST™, SmartLEWIS™, SPOCT™, SOLID FLASH™, TEMPFET™, thinQ™, TRENCHSTOP™, TriCore™.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOST™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

www.infineon.com

Edition 2015-04-02

Published by

Infineon Technologies AG
81726 Munich, Germany

© 2014 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference
Doc_Number

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.