

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

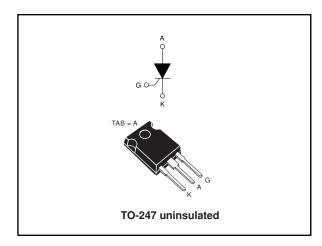
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



TM8050H-8W

80 A high temperature Thyristor (SCR)

Datasheet - production data

Features

High junction temperature: T_j = 150 °C
Blocking voltage: V_{DRM} = V_{RRM} = 800 V

• Nominal current: I_{T(RMS)} = 80 A

Gate triggering current: I_{GT} max. = 50 mA

High noise immunity: dV/dt > 1 kV/μs

Through hole package TO-247

- Ecopack®2 (includes halogen free & RoHS compliance)
- Increase of thermal margin due to extended T_j up to 150 °C
- Low ID and IR in blocking state

Applications

- Solid state switch
- Battery charging system
- Variable speed motor drive
- Industrial welding systems
- AC-DC rectifier controlled bridge
- Soft starter systems

Description

Available in high power package (TO-247), the device is suitable in applications where power switching ($I_{T(RMS)} = 80$ A at $T_C = 126$ °C) and power dissipation ($V_{TM} = 1.55$ V at 160 A) are critical, such as motorbike voltage regulator, bypass AC switch, controlled rectifier bridge, solid state relay, battery charger, welding equipment and motor driver applications. The TM8050H-8W is available in through hole TO-247 package.

Table 1: Device summary

Symbol	Value
I _{T(RMS)}	80 A
V _{DRM} /V _{RRM}	800 V
lgт	50 mA
Tj	150 °C

Characteristics TM8050H-8W

1 Characteristics

Table 2: Absolute ratings (limiting values)

Symbol	Parameter			Value	Unit	
I _{T(RMS)}	RMS on-state current (180 ° co	T _C = 126 °C	80	Α		
I _{T(AV)}	Average on-state current (180 ° conduction angle)		50	Α		
l=o	Non repetitive surge peak	$t_p = 8.3 \text{ ms}$	T_i initial = 25 °C	731	^	
Ітѕм	on-state current	t _p = 10 ms	1) IIIIIIIai = 25 G	670	A	
l ² t	I^2 t value for fusing $T_j = 25$ °C			2245	A ² s	
V _{RRM} / V _{DRM}	Maximum repetitive symmetric	е	800	V		
dl/dt	Critical rate of rise of on- state current $f = 50 \text{ Hz}$ $l_G = 2 \times l_{GT}$, $t_T \le 100 \text{ ns}$		T _j = 25 °C	200	A/μs	
Ідм	Peak gate current t _p = 20 μs		T _j = 150 °C	8	Α	
P _{G(AV)}	Average gate power dissipation $T_j = 150 \text{ °C}$			1	W	
V _{RGM}	Maximum peak reverse gate voltage			5	V	
T _{stg}	Storage junction temperature range			-40 to +150	°C	
Tj	Maximum operating junction temperature			-40 to +150	°C	

Table 3: Electrical characteristics (T_j = 25 °C unless otherwise specified)

Symbol	Test Conditions			Value	Unit	
	Min.		Min.	2.5	mΛ	
I _{GT}	$V_D = 12 \text{ V}, R_L = 33 \Omega$		Max.	50	mA	
V_{GT}	$V_D = 12 \text{ V}, R_L = 33 \Omega$		Max.	1.5	V	
V _{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$	T _j = 150 °C	Min.	0.2	V	
Ін	I _T = 500 mA, gate open		Max.	100	mA	
IL	$I_G = 1.2 \times I_{GT}$ Max.			125	mA	
t _{gt}	$I_T = 80 \text{ A}, V_D = V_{DRM}, I_G = 200 \text{ mA}, dI_G/dt = 0.2 \text{ A}/\mu\text{s}$			3	μs	
dV/dt	$V_D = 67 \% V_{DRM}$, gate open $T_j = 150 \degree C$		Min.	1000	V/µs	
tq	$\begin{split} I_T &= 33 \text{ A, } dI_T/dt = 10 \text{ A/}\mu\text{s, } V_R = 75 \text{ V,} \\ V_D &= 400 \text{ V, } dV_D/dt = 20 \text{ V/}\mu\text{s, } t_P = 100 \mu\text{s} \end{split} \qquad T_j = 150 \text{ °C} \end{split}$		Max.	150	μs	
V_{TM}	$I_{TM} = 160 \text{ A}, t_P = 380 \mu s$ $T_j = 25 ^{\circ}\text{C}$		Max.	1.55	V	
V _{TO}	Threshold voltage $T_j = 150 ^{\circ}\text{C}$		Max.	0.85	٧	
R _D	Dynamic resistance $T_j = 150 ^{\circ}\text{C}$		Max.	5.5	mΩ	
I _{DRM}	VD = VDBM = VB = VBBM = 800 V	T _j = 25 °C	Max.	20	μΑ	
I _{RRM}	VD = VDRM = VR = VRRM = 800 V	T _j = 150 °C	Max.	2.5	mA	

TM8050H-8W Characteristics

Table 4: Thermal parameters

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case (DC,max.)	0.30	0C/M
R _{th(j-a)}	Junction to ambient (DC, typ., S _{cu} = 2.1 cm ²)	50	°C/W

Characteristics TM8050H-8W

1.1 Characteristics (curves)

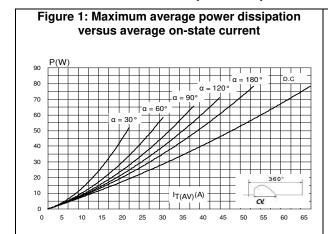
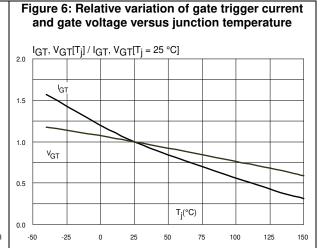
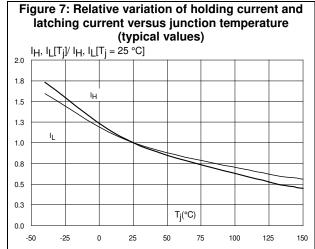




Figure 3: Average and D.C. on state current versus ambient temperature IT(AV)(A)4.5 4.0 3.5 D.C 3.0 2.5 α = 180° 2.0 1.5 1.0 0.5 T_A(°C) 0.0

Figure 5: Relative variation of thermal impedance

TM8050H-8W Characteristics

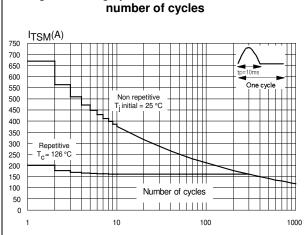
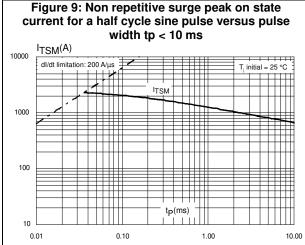



Figure 8: Surge peak on state current versus

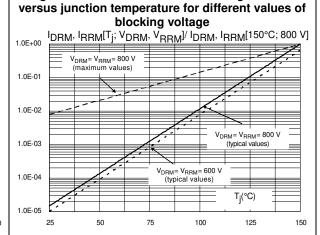
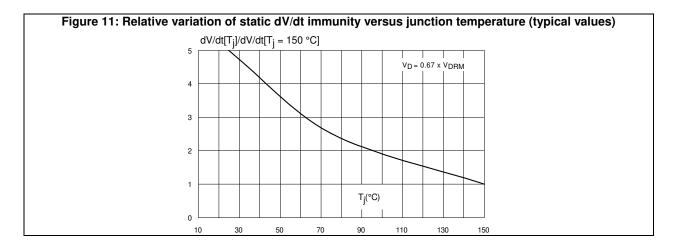
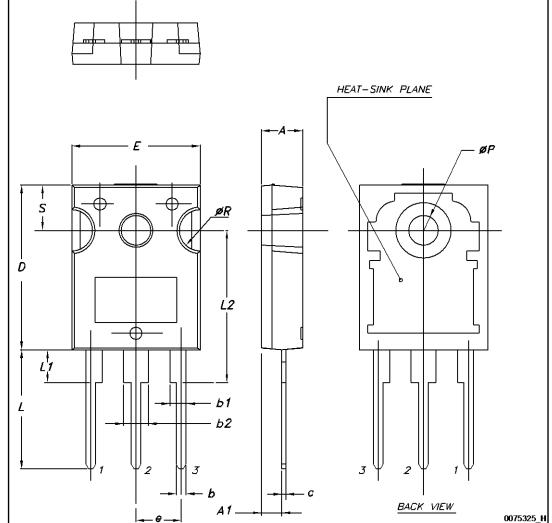



Figure 10: Relative variation of leakage current

Package information TM8050H-8W


2 **Package information**

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Figure 12: TO-247 package outline

- Epoxy meets UL94, V0
- Lead-free package lead finishing; halogen-free moulding resin

TO-247 package information 2.1

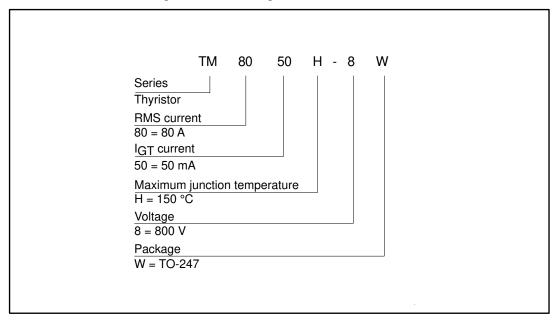
TM8050H-8W Package information

Table 5: TO-247 package mechanical data

	Dimensions					
Dim.		Millimeters		Inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.85		5.15	0.1909		0.2028
A1	2.20		2.60	0.0866		0.1024
b	1.0		1.40	0.0394		0.0551
b1	2.0		2.40	0.0787		0.0945
b2	3.0		3.40	0.1181		0.1339
С	0.40		0.80	0.0157		0.0315
D ⁽²⁾	19.85		20.15	0.7815		0.7933
Е	15.45		15.75	0.6083		0.6201
е	5.30	5.45	5.60	0.2087	0.2146	0.2205
L	14.20		14.80	0.5591		0.5827
L1	3.70		4.30	0.1457		0.1693
L2		18.50			0.7283	
ØP ⁽³⁾	3.55		3.65	0.1398		0.1437
ØR	4.50		5.50	0.1772		0.2165
S	5.30	5.50	5.70	0.2087	0.2165	0.2244

Notes:

⁽¹⁾Inch dimensions given only for reference


 $^{^{\}rm (2)} \mbox{Dimension D}$ plus gate protrusion does not exceed 20.5 mm

 $[\]ensuremath{^{(3)}}\mbox{Resin}$ thickness around the mounting hole is not less than 0.9 mm

Ordering information TM8050H-8W

3 Ordering information

Figure 13: Ordering information scheme

Table 6: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
TM8050H-8W	TM8050H8	TO-247	4.43 g	30	Tube

4 Revision history

Table 7: Document revision history

Date	Revision	Changes
03-May-2016	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

