imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TMD2620 Proximity Sensor Module

General Description

The device is an advanced proximity sensor. The slim module incorporates an IR LED and factory calibrated LED driver. The proximity detection feature provides object detection (e.g. mobile device screen to user's ear) by photodiode detection of reflected IR energy (sourced by the integrated LED).

Detect/release events are interrupt driven, and occur when proximity result crosses upper and/or lower threshold settings.

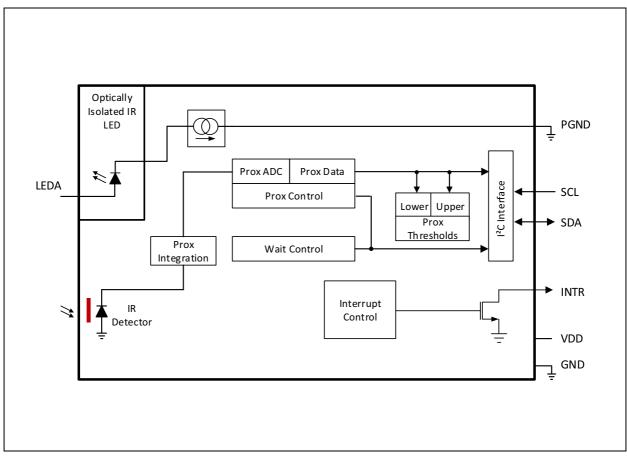
The proximity engine features offset adjustment registers to compensate for unwanted IR energy reflection at the sensor. Proximity results are further improved by automatic ambient light subtraction.

Ordering Information and Content Guide appear at end of datasheet.

Figure 1: Added Value of Using TMD2620

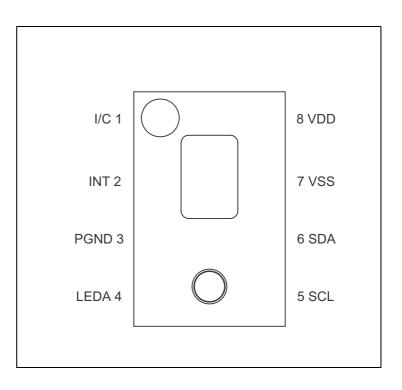
Benefits	Features
Reduced board space requirements and enables low-profile system design	 Small footprint and low profile package 3.10 x 2.00 x 1.00 mm
Reduced power consumption	 0.18µm process technology with 1.8V I²C bus

Applications


The TMD2620 is ideal for mobile phone touch screen disable.

Block Diagram

The functional blocks of this device are shown below:



amu

Pin Assignment

Figure 3: TMD2620 Pinout (Top View)

Figure 4: Pin Description

Pin Number	Pin Name	Description	
1	I/C	Internal connection. Connect to ground.	
2	INT	Interrupt. Open drain output (active low)	
3	PGND	Ground for LED current sink and I/O buffers	
4	LEDA	LED anode	
5	SCL	l ² C serial clock input	
6	SDA	l ² C serial data I/O terminal	
7	VSS	Ground. All voltages are referenced to GND	
8	VDD	Supply voltage	

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5:		
Absolute	Maximum	Ratings

Symbol	Parameter	Min	Мах	Units
VDD	Supply voltage	-0.3	2.2	V
LEDA	Supply voltage	-0.3	3.6	V
V _{IO}	Digital I/O terminal voltage	-0.3	3.6	V
(SDA, INT)	Output terminal current	-1	20	mA
T _{STRG}	Storage temperature range	-40	85	٥C
I _{SCR}	Input current (latch up immunity) JEDEC JESD78D Nov 2011	CLASS 1		
ESD _{HBM}	Electrostatic discharge HBM S-001-2014	±2000 V		
ESD _{CDM}	Electrostatic discharge CDM JEDEC JESD22-C101F Oct 2013	±	500	V

Electrical Characteristics

Figure 6:

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Мах	Units
V _{DD}	Supply voltage	1.7	1.8	2.0	V
V _{LEDA}	Voltage supplied to LEDA pin		3.3		V
T _A	Operating free-air temperature ⁽¹⁾	-30		85	°C

Note(s):

1. While the device is operational across the temperature range, performance will vary with temperature. Operational characteristics are at 25°C, unless otherwise noted.

Figure 7:

Operating Characteristics, $V_{DD} = 1.8 V$, $T_A = 25^{\circ}C$ (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{OSC}	Oscillator frequency			8.0		MHz
IDD	Supply current ⁽¹⁾	ldle state (PON=1, PEN=0) ⁽²⁾		30		μΑ
		Sleep state ⁽³⁾		0.7	5.0	μA
VOL	INT, SDA output low voltage	6 mA sink current			0.6	V
ILEAK	Leakage current, SDA, SCL, INT pins		-5		5	μΑ
VIH	SCL, SDA input high voltage		1.26			V
VIL	SCL, SDA input low voltage				0.54	V

Note(s):

1. Values are shown at the VDD pin and do not include current through the IR LED.

2. Idle state occurs when PON=1 and all functions are not enabled.

3. Sleep state occurs when PON = 0 and I²C bus is idle. If Sleep state has been entered as the result of operational flow, SAI = 1, PON will remain high.

amu

Figure 8:

Proximity Optical Characteristics of TMD2620

Parameter	Conditions	Min	Тур	Max	Unit
Part to part variation ⁽¹⁾	Conditions: PGAIN = 2 (4x) PLDRIVE = 8 (54mA) PPULSE = 15 (16 pulses) PPULSE_LEN = 1 (16µs) d=23mm round target 30mm target distance	75	100	125	%
Response, absolute	Basic proximity measurement ⁽²⁾ Conditions: PGAIN = 2 (4x), PLDRIVE = 7(48mA) PPULSE = 15 (16 pulses) PPULSE_LEN = 2 (16µs) Target material: 90% reflective surface of Kodak gray card Target Size: 100mm x 100mm Target Distance: 60mm	82	103	123	Counts
Response, no target using offset values from 0xE6 and 0xE7	PGAIN = 2 (4x) ILEDDRIVE = 16 (102mA) PPULSE = 16 (17 Pulses) Pulse Length = 2 (16µS)	0		10	
Noise/Signal ⁽³⁾	PGAIN = 2 (4x) IRLEDDRIVE = 8 (54mA) PPULSE = 15 (16 pulses) PPULSE_LEN = 1 (8μs) d=23mm round target 30mm target distance			1	%

Note(s):

1. Production tested result is the average of 5 readings expressed relative to a calibrated response.

2. Representative result by characterization.

3. Production tested result is the average of 20 readings divided by the average response.

Figure 9: Proximity Operation

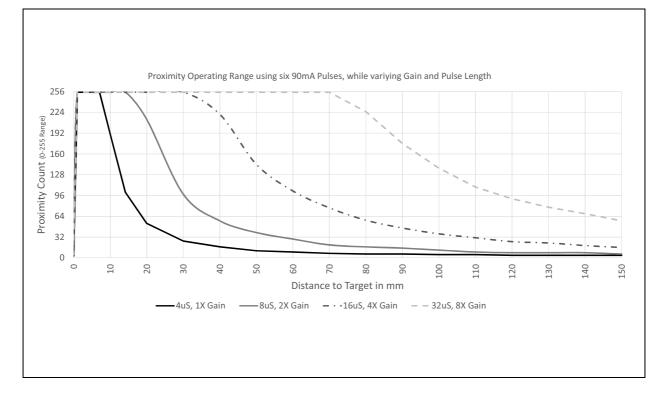


Figure 10: Proximity Angular Spectral Response

am

Register Description

Device address is 0x29.

Figure 11: Register Overview

Address	Register Name	R/W	Register Function	Reset Value
0x80	ENABLE	R/W	Enables states and interrupts	0x00
0x82	PRATE	R/W	Proximity sample rate	0x1F
0x83	WTIME	R/W	Wait time	0x00
0x88	PILT	R/W	Proximity interrupt low threshold	0x00
0x8A	PIHT	R/W	Proximity interrupt high threshold	0x00
0x8C	PERS	R/W	Proximity interrupt persistence filters	0x00
0x8D	CFG0	R/W	WTIME configuration	0x80
0x8E	PCFG0	R/W	Proximity pulse width and count	0x4F
0x8F	PCFG1	R/W	Proximity gain and LED current	0x80
0x91	REVID	R	Revision ID	
0x92	ID	R	Device ID	0xD4
0x93	STATUS	R, SC	Device status register one	0x00
0x9C	PDATA	R	Proximity ADC data register MSBs	0x00
0x9E	REVID2	R	Reserved	0x00
0x9F	CFG2	R/W	Configuration register two	0x00
0xAB	CFG3	R/W	Configuration register three	0x0C
0xC0	POFFSET_L	R/W	Proximity offset value	0x00-0xFF
0xC1	POFFSET_H	R/W	Proximity offset sign	0x00-0xFF
0xD7	CALIB	R/W	Calibration control	0x00
0xD9	CALIBCFG	R/W	Calibration configuration	0x00
0xDC	CALIBSTAT	R/W	Calibration status bit	0x00
0xDD	INTENAB	R/W	Interrupt enables	0x00

Register Access:

- R = Read Only
- W = Write Only
- R/W = Read or Write
- SC = Self Clearing after access

ENABLE Register (0x80)

Figure 12: ENABLE Register

	0x80: ENABLE							
Field	Name	Reset	Туре	Description				
7:4	Reserved	0	RW	Reserved				
3	wen	0	RW	Wait Enable. This bit activates the wait feature. Writing a one actives the wait timer. Writing a zero disables the wait timer.				
2	pen	0	RW	Proximity Detect Enable. This field activates the proximity detection.				
1	Reserved	0	RW	Reserved				
0	pon	0	RW	Power On. This field activates the internal oscillator to permit the timers and ADC channels to operate. Writing a one activates the oscillator. Writing a zero disables the oscillator.				

The Mode/Parameter fields should be written before pen is asserted. The function pen require pon to be asserted for the respective function to operate correctly.

PRATE Register (0x82)

Figure 13: PRATE Register

	0x82: PRATE						
Field	Name	Reset	Туре	Description			
7:0	prate	0x1F	RW	When averaging is turned on, this register defines the time between proximity measurements. The time will be 88µs times this register's value.			

WTIME Register (0x83)

Figure 14: WTIME Register

	0x83: WTIME								
Field	Name	Reset	Туре		Description				
				Wait Time. Eight bit val	ue that specifies the time	<u>,</u>			
				Value	Wait Cycles	Wait Time			
		ie 0x00 R	e 0x00 RW	0×00 DW	0x00 RW	0x00	1	2.81ms/ 33.8ms	
7:0	wtime					0x01	2	5.6ms/ 67.6ms	
7.0	wante								
							0x3f	63	180ms/ 2.16s
					0xff	255	721ms/ 8.65s		

The wait timer is implemented with a down counter with 0x00 as the terminal count. Loading 0x00 will generate a 2.81ms wait time, loading 0x01 will generate a 5.6ms wait time, and so forth; by asserting wlong, in register 0x8D the wait time is given in multiples of 33.8ms (12x).

PILT Register (0x88)

Figure 15: PILT Register

0x88: PILT							
Field	Name	Reset	Туре	Description			
7:0	pilt	0	RW	Proximity ADC Channel Low Threshold			

This register provides the low interrupt threshold.

If the value generated by the proximity channel is below the low threshold specified and the PPERS value is reached, the pint bit is asserted which will assert the INT pin if pien is set.

PIHT Register (0x8A)

Figure 16: PIHT Register

0x8A: PIHT						
Field	Name	Reset	Туре	Description		
7:0	piht	0	RW	Proximity ADC Channel High Threshold		

This register provides the high interrupt threshold.

If the value generated by the proximity channel is above the high threshold specified and the PPERS value is reached, the pint bit is asserted which will assert the INT pin if pien is set.

PERS Register (0x8C)

This register controls the interrupt filtering capabilities of the device. Configurable filtering is provided to allow interrupts to be generated after a proximity cycle or if the integration cycle has produced a result that is outside of the values specified by threshold register for some specified number of times.

	0x8C: PERS								
Field	Name	Reset	Туре		Description				
				Proximity Pe	rsistence Filtering				
	7:4 ppers 0			Value	Interrupt generated when				
				0	Every proximity cycle				
7.4		0	RW	1	Any proximity value outside of threshold range				
7.4				2	2 consecutive proximity values out of range				
				3	3 consecutive proximity values out of range				
				15	15 consecutive proximity values out of range				
3:0	Reserved	0	RW	Reserved					

Figure 17: PERS Register

CFG0 Register (0x8D)

Figure 18: CFG0 Register

	0x8D: CFG0								
Field	Name	Reset	Туре	Description					
7:3	Reserved	10000	RW	Reserved. Must be set to 10000.					
2	wlong	0	RW	Wait Long. When asserted, the wait cycle is increased by a factor 12x from that programmed in the WTIME register.					
1:0	Reserved	0 0	RW	Reserved. Must be set to 00.					

PCFG0 Register (0x8E)

Figure 19: PCFG0 Register

	0x8E: PCFG0								
Field	Name	Reset	Туре	Description					
				Proximity Pulse Length					
				Value	Pulse Length				
7:6	ppulse_len	1	RW	0	4µs				
7.0	ppulse_lell	I	κνν	1	8µs				
				2	16µs				
				3	32µs				
		15	RW	Maximum Number of Pulses in Proximity					
				Value	Number of Pulses				
				0	1				
5:0	ppulse			1	2				
				2	3				
				63	64				

PCFG1 Register (0x8F)

Figure 20: PCFG1 Register

	0x8F: PCFG1								
Field	Name	Reset	Туре	Description					
				Proximity Gain Control. Sets the g	gain of the proximity receiver.				
				Value	Gain Value				
7:6	pgain	2	RW	0	1x				
7.0	pgan	2	IVV	1	2x				
				2	4x				
				3	8x				
5	Reserved	0	RW	Reserved					
				Proximity LED Drive Strength. Th of 6mA, this is the nominal value the trim procedure.					
			RW	Value	LED Current				
4:0	pldrive	0		0	бmА				
				1	12mA				
				31	192mA				

REVID Register (0x91)

Figure 21: REVID Register

	0x91: REVID							
Field	Name	Reset	Туре	Description				
7:3	Reserved	0	RO	Reserved				
2:0	rev_id		RO	Revision Number Identification				

ID Register (0x92)

Figure 22: ID Register

	0x92: ID								
Field	Name	Reset Type Description							
				Part Number Identification					
7:2	ID	0x35	RO	Value	Meaning				
				110101	TMD2620				
1:0	Reserved	00	RO	Reserved					

STATUS Register (0x93)

Figure 23: STATUS Register

	0x93: STATUS							
Field	Name	Reset	Туре	Description				
7	Reserved	0	R, SC	Reserved				
6	psat	0	R, SC	Proximity Saturation. Indicates that an ambient- or reflective-saturation event occurred during a previous proximity cycle. Writing a 1 will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1				
5	pint	0	R, SC	Proximity Interrupt. Indicates that the device is asserting a proximity interrupt. Writing a 1 will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_ clear must be set 1				
4	Reserved	0	R, SC	Reserved				
3	cint	0	R, SC	Calibration Interrupt. Writing a 1 will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_ clear must be set 1				
2	zint	0	R, SC	Zero Detection Interrupt. Writing a 1 will clear this status flag. Enable clear-byread with CFG3				
1	psat_ reflective	0	R, SC	psat interrupt is from reflective light saturation writing a 1 to psat or psat_reflective will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1				
0	psat_ ambient	0	R, SC	psat interrupt is from ambient light or idac threshold saturation writing a 1 to psat or psat_ambient will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1				

STATUS flags are reset with reading from STATUS address, or with writing 1 to dedicated bits of STATUS address.

PDATA Register (0x9C)

Figure 24: PDATA Register

	0x9C: PDATA							
Field	FieldNameResetTypeDescription							
7:0	pdata	0	RO	This register contains the 8-bit proximity data.				

REVID2 Register (0x9E)

Figure 25: REVID2 Register

	0x9E: REVID2								
Field	Name	Reset	Туре	Description					
7:4	Reserved	0	RO	Reserved					
3:0	aux_id	0	RO	TBD					

CFG3 Register (0xAB)

Figure 26: CFG3 Register

	0xAB: CFG3									
Field	Name	Reset	Туре		Description					
7	int_read_clear	0	RW	reset afte	If set to 1, interrupt flags in STATUS register (0x93) are reset after I ² C reads to the STATUS register; otherwise the interrupt flags will not be reset.					
6:5	Reserved	0	R, SC	Reserved	l. Set to 0.					
					oximity cy	ıpt: Power down ycle if an interrup	the device at the end ot has been			
				PON	SAI	INT (low active)	Oscillator			
				0	х	x	OFF			
4	sai	0	RW	1	0	x	ON			
				1	1	1	ON			
				1	1	0	OFF (SAI induced sleep)			
						up" the device fr upt register 0x93	om SAI-sleep is by 5.			
3:0	Reserved	1100	RW	Reserved	l. Set to 0.					

Note(s):

1. SAI does not modify any register bits directly, it rather uses the interrupt signal to turn OFF the oscillator.

POFFSET_L Register (0xC0)

Figure 27: POFFSET_L Register

0xC0: POFFSET_L							
Field	Field Name Reset Type Description						
7:0	poffset_l	0x00-0xFF	R, SC	Offset compensation for proximity channel (magnitude)			

POFFSET_H Register (0xC1)

Figure 28: POFFSET_H Register

0xC1: POFFSET_H					
Field	Name	ame Reset Type Description			
0	poffset_h	0x00-0xFF	R, SC	Offset compensation for proximity channel (sign)	

CALIB Register (0xD7)

Figure 29: CALIB Register

0xD7: CALIB						
Field	Name	Reset	Туре	Description		
7:6	Reserved	0	RO	Reserved. Set to 0.		
5	electrical_calibration	0	RW_SM	If set, do electrical offset calibration (diodes disabled) instead of optical. Otherwise, do optical calibration. In either case, the result is stored in the POFFSET_L/H registers. This flag is cleared after calibration is completed. This flag is redundant, software could just: set gdiode_disab=0xf set concap_intinn=1 start calibration. However, since electrical calibration is done automatically at the first time PON gets asserted, the function is there anyway, so it's made available to the user here.		
4:1	Reserved	0	WS_SC	Reserved. Set to 0.		
0	start_offset_calib	0	RW_SM	Start Offset Calibration. The result is stored in the POFFSET registers. The calib_finished flag is asserted afterwards. Calibration can be stopped by writing a 0 to this bit.		

CALIBCFG Register (0xD9)

Figure 30: CALIBCFG Register

0xD9: CALIBCFG						
Field	Name Reset Type		Description			
		0x2	RW	ADC target during binary search		
	binsrch_target			Value	Target	
				0	0	
				1	1	
				2	3	
				3	7	
				4	15	
7:5				5	31	
7.5				6	63	
				7	127	
				Note: This target is relative the circuit, a 10-bit target i lowest 2 bits are always ign zero during binary search a In hardware, this defines a ignore when comparing to target=4 (target=15) mean ADC are AND'ed with 0xffo zero. Only values 16 or larg ADC values.	s used (x4) of which the nored when checking for and zero detection. mask of which bits to p zero. e.g. binsrch_ ns that values from the 0 before comparing to	
4	Reserved	0	RW	Reserved. Set to 0.		
3	prox_auto_offset_ 0 adjust		SC	This bit enables an automatic adjustment of the offset used in proximity measurements. If this bit set, when a measurement returns zero, the value of 0xC0 will be decremented and offset_adjusted flag will be set, bit 2 in 0xDC.		

amu

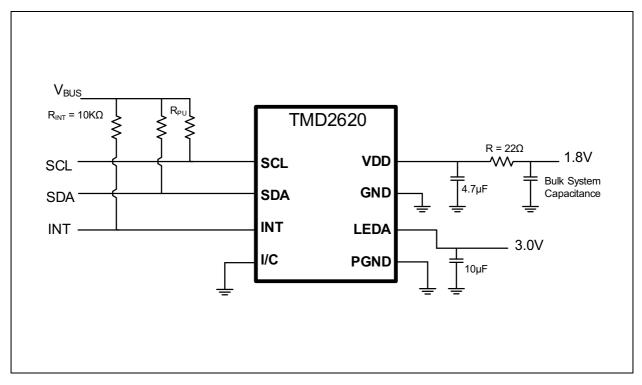
0xD9: CALIBCFG					
Field	Name	Reset	Туре	Descr	iption
	prx_data_avg	0	R_PUSH	Prox data calculation is done by averaging consecutive windows of constant size. At the end of the window, PDATA is updated. Typical use case is HRM measurement	
				Value	Window Size
				0	disable
				1	2
2:0				2	4
				3	8
				4	16
				5	32
				6	64
				7	128

CALIBSTAT Register (0xDC)

Figure 31: CALIBSTAT Register

0xDC: CALIBSTAT					
Field	Name	Reset	Туре	Description	
7:3	Reserved	0		Reserved	
2	offset_adjusted	0	SC	This bit is a flag that the automatic proximity offset adjustment has changed the offset in register 0xDC. See 0xD9 for "prox_auto_offset_adjust".	
1	Reserved	0		Reserved	
0	calib_finished	0	R/W	Offset calibration has finished. Clear bit by writing '1' to it. Bit generates interrupt if cien is asserted.	

INTENAB Register (0xDD)


Figure 32: INTENAB Register

	0xDD: INTENAB				
Field	Name	Reset	Туре	Description	
6	psien	0	RW	Writing '1' to this bit enables psat.	
5	pien	0	RW	Writing '1' to this bit enables prox interrupt.	
3	cien	0	RW	Writing '1' to this bit enables calibration interrupt.	
2	zien	0	RW	Writing '1' to this bit enables zero_detection/offset_adjustment.	

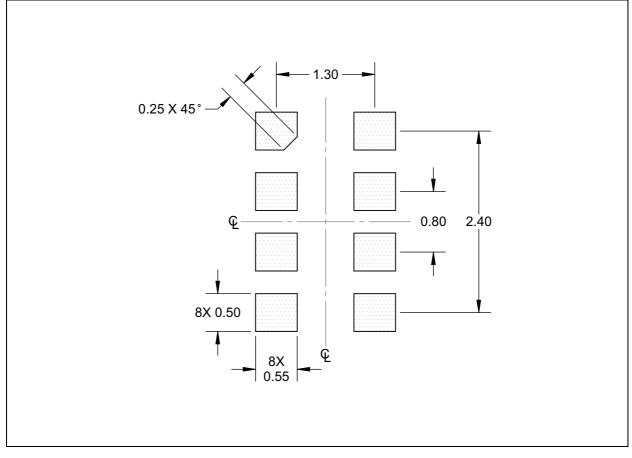
Application Information

Figure 33: Typical Application Hardware Circuit

Note(s):

1. Place the $4.7\mu F$ and $10\mu F$ capacitors within 5mm of the module.

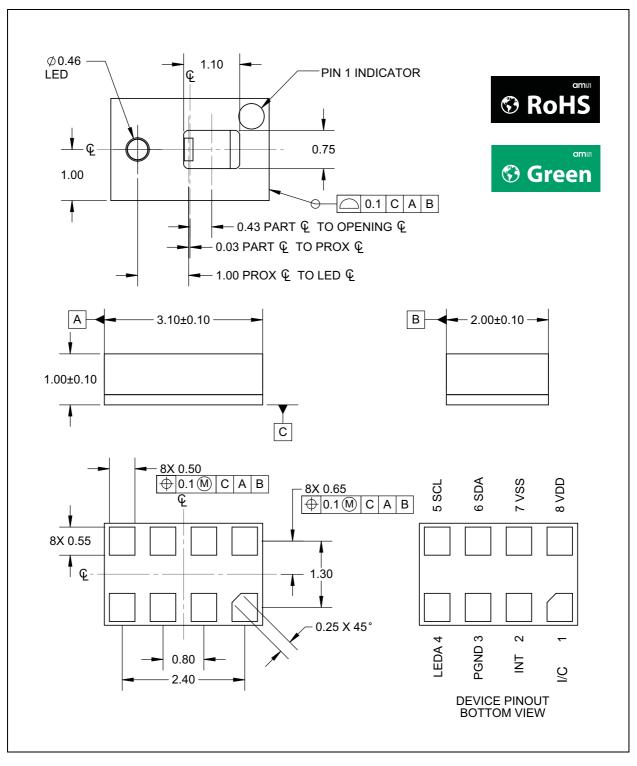
2. The value of the I²C pull up resistors RPU should be based on the 1.8V bus voltage, system bus speed and trace capacitance.


3. The bulk capacitor can affect the stability of a regulated supply output and should be chosen with the regulator characteristics in mind.

4. GND and PGND should be connected to the same solid ground plane as close to the device as possible.

PCB Pad Layout

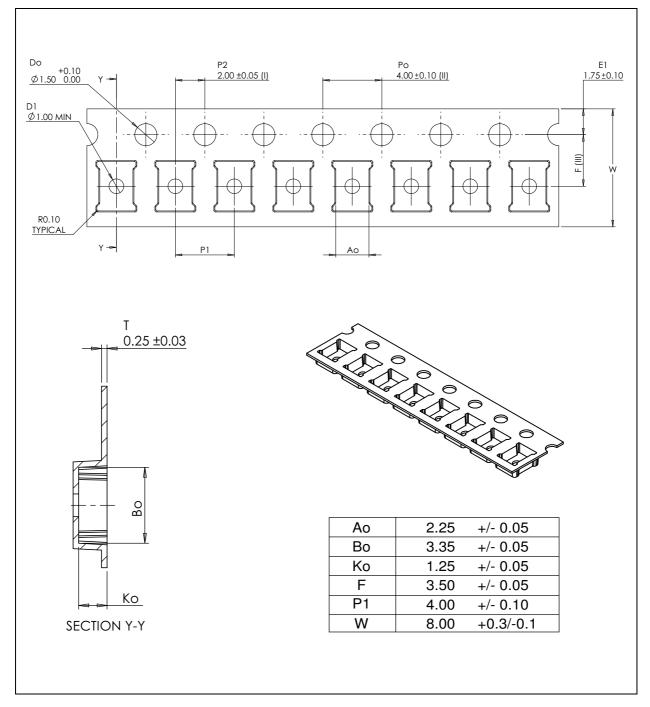
Figure 34: Recommended PCB Pad Layout


Note(s):

- 1. All linear dimensions are in millimeters.
- 2. Dimension tolerances are 0.05mm unless otherwise noted.
- 3. This drawing is subject to change without notice.

Packaging Mechanical Data

Figure 35: Package Drawing


Note(s):

- 1. All linear dimensions are in millimeters.
- 2. Dimension tolerances are 0.05mm unless otherwise noted.
- 3. Contact finish is Au.
- 4. This package contains no lead (Pb).
- 5. This drawing is subject to change without notice.

Tape & Reel Information

Figure 36: Tape & Reel Information

Note(s):

- 1. Measured from centreline of sprocket hole to centreline of pocket.
- 2. Cumulative tolerance of 10 sprocket holes is \pm 0.20.
- 3. Measured from centreline of sprocket hole to centreline of pocket.
- 4. Other material available.