

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

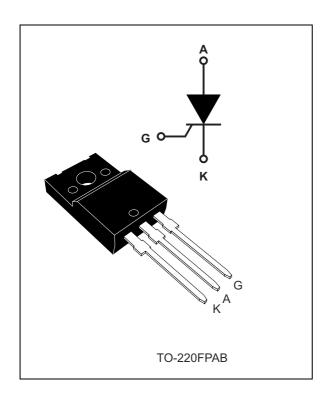
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



TN2015H-6FP

High temperature 20 A SCRs

Datasheet - production data

Features

- High junction temperature: T_i = 150 °C
- High noise immunity $dV/dt = 750 V/\mu s$ up to 150 °C
- Gate triggering current I_{GT} = 15 mA
- Blocking voltage V_{DRM}/V_{RRM} = 600 V
- High turn on current rise dl/dt: 100 A/μs
- ECOPACK[®]2 compliant component
- Complies with UL standards (File ref: E81734)
- Insulated package TO-220FPAB:
 - Insulated voltage: 2000 VRMS

Applications

- · Voltage regulator circuits for motorbikes
- Inrush current limiting circuits
- Motor control circuits and starters
- Light dimmers
- Solid state relays

Description

Thanks to a junction temperature T_j up to 150 °C and an insulated TO-220FPAB package, the TN2015H-6FP offers high thermal performance operation up to 20 A rms.

The trade-off between the device's noise immunity (dV/dt = 750 V/ μ s), its gate triggering current (I_{GT} = 15 mA) and its turn-on current rise (dl/dt = 100 A/ μ s) allows the design of robust and compact control circuits for voltage regulators in motorbikes and industrial drives, overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits.

The insulated fullpack package allows a back-to-back configuration.

Table 1. Device summary

Order code	Package	V_{DRM}/V_{RRM}	I _{GT}		
TN2015H-6FP	TO-220FPAB	600 V	15 mA		

Characteristics TN2015H-6FP

1 Characteristics

Table 2. Absolute ratings

Symbol	Paramete	r		Value	Unit	
I _{T(RMS)}	On-state rms current (180° conduction angle) $T_c = 80^{\circ}$		T _c = 80 °C	20	Α	
			T _c = 80 °C	12.7		
$I_{T(AV)}$	Average on-state current (180° conduction angle)		T _c = 99 °C	10	Α	
			T _c = 112 °C	8		
1.	Non repetitive surge peak on-state curre	ent	t = 8.3 ms	197	Α	
I _{TSM}	$(T_j \text{ initial} = 25 \text{ °C})$		t = 10 ms	180	A	
l ² t	I ² t value for fusing (T _j initial = 25 °C)		t _p = 10 ms	162	A ² s	
dI/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}, t_r \le 100 \text{ ns}, T_i = 25 \text{ °C}$		F = 60 Hz	100	A/μs	
V _{DRM} , V _{RRM}	Repetitive peak off-state voltage			600	V	
I_{GM}	Peak gate current	t _p = 20 μs	T _j = 150 °C	4	Α	
P _{G(AV)}	Average gate power dissipation		T _j = 150 °C	1	W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range		- 40 to + 150 - 40 to + 150	°C		
T _L	Maximum lead temperature for soldering during 10 s			260	°C	
V _{ins}	Insulation rms voltage, 1 minute	2000	٧			

Table 3. Electrical characteristics (T_j = 25 °C, unless otherwise specified)

Symbol	Test conditions			Value	Unit
1	I_{GT} $V_D = 12 \text{ V}, R_L = 33 \Omega$		Тур.	6	mA
'GT				Max.	15
V_{GT}	$V_D = 12 \text{ V}, R_L = 33 \Omega$		Max.	1.3	V
V _{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$ $T_j = 150 ^{\circ}\text{C}$		Min.	0.2	V
I _H	I _T = 500 mA, gate open		Max.	50	mA
ΙL	$I_G = 1.2 \times I_{GT}$		Max.	60	mA
dV/dt	V _D = 402 V, gate open	T _j = 150 °C	Min.	750	V/µs
t _{gt}	$I_T = 40 \text{ A}, V_D = 600 \text{ V}, I_G = 100 \text{ mA},$ $(dI_G/dt) \text{max} = 0.2 \text{ A/}\mu\text{s}$		Тур	1.9	μs
t _q	$V_D = 402 \text{ V}, V_R = 25 \text{ V}, I_T = 20 \text{ A}, \\ (dI_G/dt)max = 30 \text{ A/}\mu\text{s}, dV_D/dt = 50 \text{ V/}\mu\text{s} $ $T_j = 150 \text{ °C}$		Тур	70	μs

TN2015H-6FP Characteristics

Table 4. Static characteristics

Symbol	Test conditions		Value	Unit	
V_{TM}	$I_{TM} = 40 \text{ A}, t_p = 380 \mu\text{s}$	T _j = 25 °C	Max.	1.6	V
V _{t0}	Threshold voltage	T _j = 150 °C	Max.	0.82	٧
R _d	Dynamic resistance	T _j = 150 °C	Max.	17.5	mΩ
I _{DRM,}	V V V	T _j = 25 °C	Max.	5	μΑ
I _{RRM}	$V_D = V_{DRM}, V_R = V_{RRM}$	T _j = 150 °C	iviax.	2	mA

Table 5. Thermal resistance

Syn	nbol	Parameter	Value	Unit
R_{th}	h(j-c)	Junction to case (AC)	4.0	°C/W
R _{th}	n(j-a)	Junction to ambient (DC)	60	°C/W

Figure 1. Maximum power dissipation versus average on-state current

20 P(W) α = 180°. DC. 18 α = 120° α = 90° 16 14 $\alpha = 30$ 12 10 8 6 4 2 $I_{T(AV)}(A)$ 15 10

Figure 2. Average and DC on-state current versus case temperature

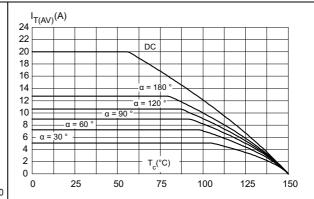
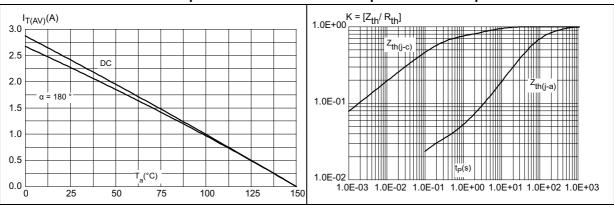
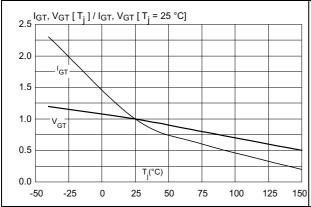
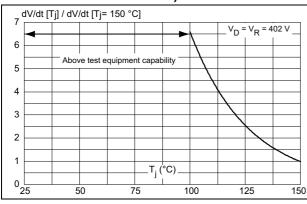



Figure 3. Average and DC on-state current versus ambient temperature


Figure 4. Relative variation of thermal impedance versus pulse duration

Characteristics TN2015H-6FP

Figure 5. Relative variation of gate triggering current and gate voltage versus junction temperature (typical values)


Figure 6. Relative variation of holding current and latching current versus junction temperature (typical values)

2.5 2.0 1.5 1.0 1.0 0.5 0.0 -50 -25 0 25 50 75 100 125 150

Figure 7. Relative variation of static dV/dt immunity versus junction temperature (typical values)

Figure 8. Surge peak on-state current versus number of cycles

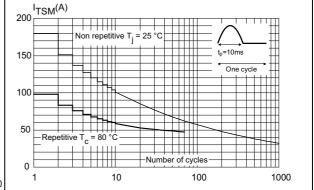
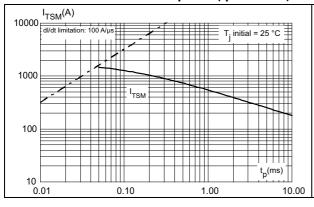
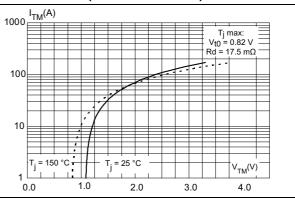
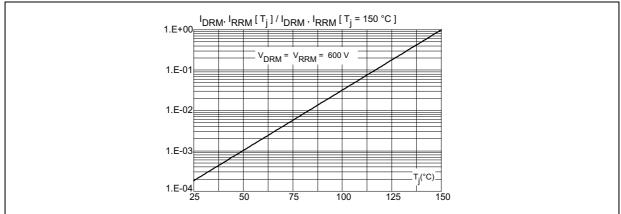




Figure 9. Non-repetitive surge peak on-state current for a sinusoidal pulse (tp < 10 ms)


Figure 10. On-state characteristics (maximum values)

TN2015H-6FP Characteristics

Figure 11. Relative variation of leakage current versus junction temperature (tp < 10 ms)

Package information TN2015H-6FP

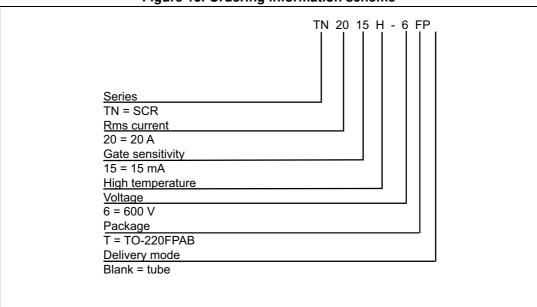
2 **Package information**

- Epoxy meets UL94, V0
- Lead-free package
- Halogen free molding compound
- Recommended torque: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Н Dia L6 L2 L7 L3 L5 D F1 L4 F2 F Ε G1 G

Figure 12. TO-220FPAB dimension definitions


Table 6. TO-220FPAB dimensions

		Dimer	nsions	
Ref.	Millin	Millimeters		hes
	Min.	Max.	Min.	Max.
А	4.4	4.6	0.173	0.181
В	2.5	2.7	0.098	0.106
D	2.5	2.75	0.098	0.108
Е	0.45	0.70	0.018	0.027
F	0.75	1	0.030	0.039
F1	1.15	1.70	0.045	0.067
F2	1.15	1.70	0.045	0.067
G	4.95	5.20	0.195	0.205
G1	2.4	2.7	0.094	0.106
Н	10	10.4	0.393	0.409
L2	16 ⁻	Тур.	0.63	Тур.
L3	28.6	30.6	1.126	1.205
L4	9.8	10.6	0.386	0.417
L5	2.9	3.6	0.114	0.142
L6	15.9	16.4	0.626	0.646
L7	9.00	9.30	0.354	0.366
Dia.	3.00	3.20	0.118	0.126

Ordering information TN2015H-6FP

3 Ordering information

Figure 13. Ordering information scheme

Table 7. Ordering information

Order code Marking		Package	Weight	Base qty	Delivery mode
TN2015H-6FP	TN2015H6	TO-220FPAB	2.0 g	50	Tube

4 Revision history

Table 8. Document revision history

	Date	Revision	Changes
25	5-Feb-2015	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

