

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TN5015H-6T

High temperature 50 A SCRs

Datasheet - production data

Features

- High junction temperature: T_j = 150 °C
- High noise immunity up to 150 °C
- Gate triggering current I_{GT} = 15 mA
- Peak off-state voltage V_{DRM}/V_{RRM} = 600 V
- High turn-on current rise $dI/dt = 100 A/\mu s$
- ECOPACK®2 compliant component

Applications

- Motorbike voltage regulator circuits
- Inrush current limiting circuits
- Motor control circuits and starters
- Solid state relays

Description

Packaged in a non-isolated TO-220AB, this device offers high thermal performance during operation of up to 50 A, thanks to a junction temperature of up to 150 °C.

Its noise immunity ($dV/dt = 500 \ V/\mu s$) trade-off versus gate triggering current ($I_{GT} = 15 \ mA$) and its turn-on current rise ($dI/dt = 100 \ A/\mu s$) allow the design of robust and compact control circuits for voltage regulators in motorbikes and industrial drives, overvoltage crowbar protection, motor control circuits in power tools and kitchen appliances, and inrush current-limiting circuits.

Table 1: Device summary

Order code	Package	V _{DRM} /V _{RRM}	l _{GT}	
TN5015H-6T	TO-220AB	600 V	15 mA	

Characteristics TN5015H-6T

1 Characteristics

Table 2: Absolute maximum ratings (limiting values), T_j = 25 °C unless otherwise specified

Symbol	Paran		Value	Unit	
I _{T(RMS)}	RMS on-state current (180 ° conduction angle)		T _c = 120 °C	50	Α
			T _c = 122 °C	30	
$I_{T(AV)}$	Average on-state current (180 ° conduction angle)	1 1 = 17	T _c = 128 °C	25	Α
	(100 conduction drigic)		T _c = 134 °C	20	
l	Non repetitive surge peak on-sta	ate current	$t_p = 8.3 \text{ ms}$	493	
Ітѕм	(T _j initial = 25 °C)		$t_p = 10 \text{ ms}$	450	Α
l ² t	I ² t value for fusing		$t_p = 10 \text{ ms}$	1012	A ² s
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, tr $\leq 100 \text{ ns}$		f = 60 Hz	100	A/μs
V _{DRM} /V _{RRM}	Repetitive peak off-state voltage)	T _j = 150 °C	600	V
V _{DSM} /V _{RSM}	Non repetitive surge peak off-sta	ate voltage	t _p = 10 ms	V _{DRM} /V _{RRM} + 100	V
I _{GM}	Peak gate current tp =	= 20 μs	T _j = 150 °C	4	Α
P _{G(AV)}	Average gate power dissipation		T _j = 150 °C	1	W
V _{RGM}	Maximum peak reverse gate vol		5	V	
T _{stg}	Storage junction temperature range			-40 to +150	°C
Tj	Maximum operating junction tem		-40 to +150	°C	
Tı	Maximum lead temperature sold	10 s	260	°C	

Table 3: Electrical characteristics (Tj = 25 $^{\circ}$ C unless otherwise specified)

Symbol	Test conditions				Unit
I _{GT}	Max.		15	mA	
V _{GT}	$V_D = 12 \text{ V}, R_L = 33 \Omega$		Max.	1.3	V
V_{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$	T _j = 150 °C	Min.	0.15	V
Ін	$I_T = 500 \text{ mA}, \text{ gate open}$ Max			60	mA
IL.	I _G = 1.2 x I _{GT} Ma		Max.	80	mA
dV/dt	$V_D = 402 \text{ V}$, gate open $T_j = 150 \text{ °C}$		Min.	500	V/µs
t _{gt}	$I_{TM} = 100 \text{ A}, V_D = 402 \text{ V}, I_G = 30 \text{ mA}, (dI_G/dt) \text{ max} = 0.2 \text{ A/}\mu\text{s}$ Typ.		1.9	μs	
tq	$I_{TM} = 100 \text{ A}, V_D = 402 \text{ V}, (d_i/dt)\text{ off} = 30$ $A/\mu s, V_R = 25 \text{ V}, dV_D/dt = 50 \text{ V}/\mu s$ $T_j = 150 \text{ °C}$		Тур.	85	μs

TN5015H-6T Characteristics

Table 4: Static characteristics

14515 11 54445 5114145451154155					
Symbol	Test conditions			Value	Unit
V _{TM}	$I_{TM} = 100 \text{ A}, t_p = 380 \ \mu s$	T _j = 25 °C	Max.	1.65	V
V _{TO}	Threshold voltage	T _j = 150 °C	Max.	0.85	V
R_D	Dynamic resistance	T _j = 150 °C	Max.	9	mΩ
lance lance	$V_D = V_{DRM} = V_{RRM}$	T _j = 25 °C	Max.	10	μΑ
I _{DRM} , I _{RRM}		T _j = 150 °C	iviax.	6	mA

Table 5: Thermal parameters

Symbol	Parameter		Value	Unit
R _{th(j-c)}	Junction to case (DC)	Max.	0.6	0C/M
R _{th(j-a)}	Junction to ambient (DC)	Тур.	60	°C/W

Characteristics TN5015H-6T

1.1 Characteristics (curves)

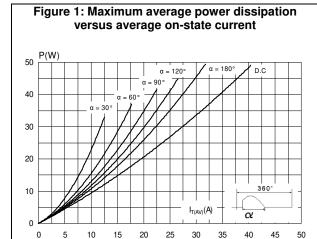
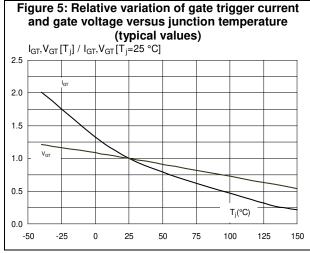
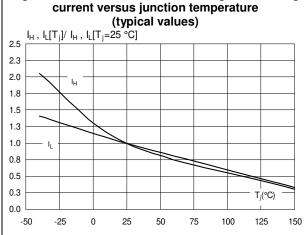
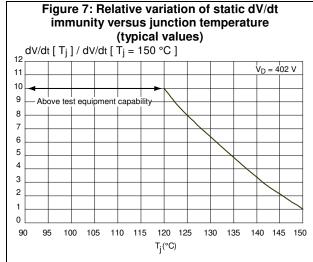
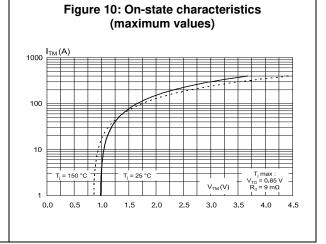



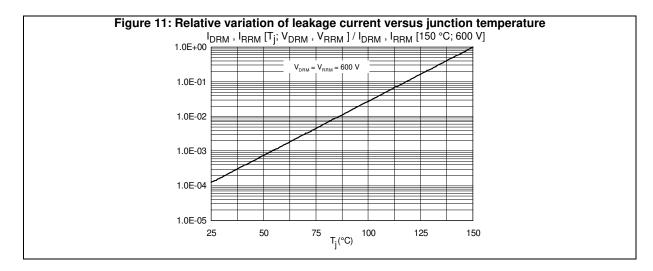
Figure 3: Average and D.C. on state current versus ambient temperature $I_{\mathsf{T}(\mathsf{AV})}(\mathsf{A})$ 3.0 2.5 2.0 α = 180 1.5 1.0 0.5 $T_A(^{\circ}C)$ 0.0 25 50 75 100 125 150

1.0E-02

1.0E-03

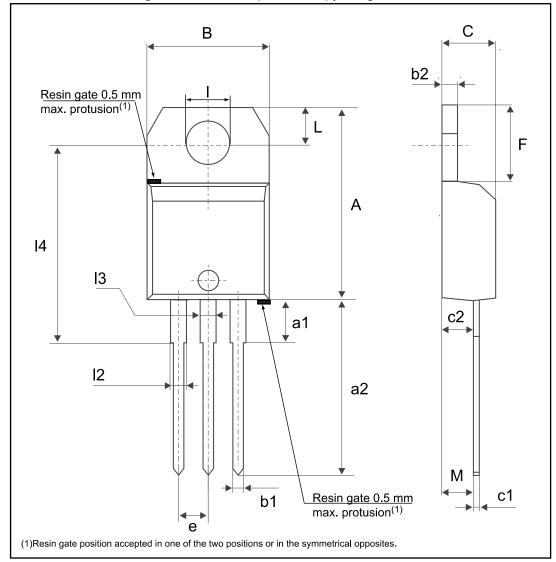

Figure 6: Relative variation of holding and latching


TN5015H-6T Characteristics

current for a sinusoidal pulse with width $t_p < 10 \text{ ms}$ $\begin{array}{c} I_{TSM}(A) \\ \hline 10000 \\ \hline 1000 \\ \hline 1000 \\ \hline 100 \\ \hline$

Figure 9: Non repetitive surge peak on-state

Package information TN5015H-6T


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

- Epoxy meets UL94, V0
- Lead-free, halogen-free package

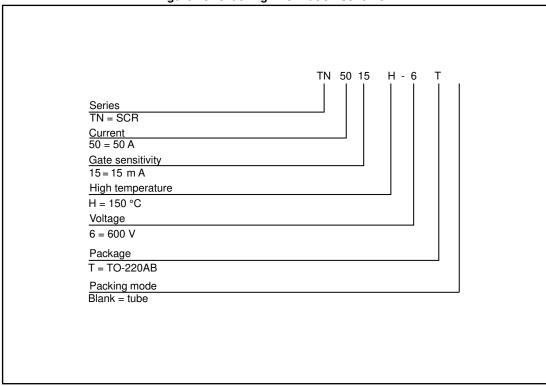
2.1 TO-220AB package information

Figure 12: TO-220AB (NIns. & Ins.) package outline

TN5015H-6T Package information

Table 6: TO-220AB (NIns. & Ins.) package mechanical data

	Dimensions						
Ref.	Millimeters		Inche		Inches ⁽¹⁾	es ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	15.20		15.90	0.5984		0.6260	
a1		3.75			0.1476		
a2	13.00		14.00	0.5118		0.5512	
В	10.00		10.40	0.3937		0.4094	
b1	0.61		0.88	0.0240		0.0346	
b2	1.23		1.32	0.0484		0.0520	
С	4.40		4.60	0.1732		0.1811	
c1	0.49		0.70	0.0193		0.0276	
c2	2.40		2.72	0.0945		0.1071	
е	2.40		2.70	0.0945		0.1063	
F	6.20		6.60	0.2441		0.2598	
1	3.73		3.88	0.1469		0.1528	
L	2.65		2.95	0.1043		0.1161	
12	1.14		1.70	0.0449		0.0669	
13	1.14		1.70	0.0449		0.0669	
14	15.80	16.40	16.80	0.6220	0.6457	0.6614	
М		2.6			0.1024		


Notes

 $[\]ensuremath{^{(1)}}\xspace$ Inch dimensions are for reference only.

Ordering information TN5015H-6T

3 Ordering information

Figure 13: Ordering information scheme

Table 7: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
TN5015H-6T	TN5015H6	TO-220AB	2.3 g	50	Tube

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
01-Jun-2017	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved