Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # **TND316S** # UN ### ON Semiconductor® http://onsemi.com ## **Excellent Power Device** Inverter and buffer driver for general purpose, Dual SOIC8 ### **Features** - · Inverter buffer - Withstand voltage of 25V is assured - · Peak output current: 1A - Monolithic structure (High voltage CMOS process adopted) - Wide range of operating voltage: 4.5V to 25V - Fast switching time (30ns typical at 1000pF load) - Fully compatible input to TTL / CMOS (VIH=up to 2.6V, at VDD=4.5 to 25V) - · Built-in input pull-down resistance ### **Specifications** ### Absolute Maximum Ratings at Ta=25°C | Parameter | Symbol | Conditions | Ratings | Unit | |-----------------------------|--------------------|------------|---------------------------------|------| | Supply Voltage | V _{DD} | | 0 to 25 | V | | Input Voltage | VIN | | GND-0.3 to V _{DD} +0.3 | V | | Allowable Power Dissipation | P _D max | | 0.3 | W | | Junction Temperature | Tj | | -55 to +150 | °C | | Storage Temperature | Tstg | | -55 to +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ### **Package Dimensions** unit : mm (typ) 7072-005 ### **Product & Package Information** • Package : SOIC8 • JEITA, JEDEC : SC-87, SOT-96 • Minimum Packing Quantity : 2,500 pcs./reel ### Packing Type: TL ### **Block Diagram** ### Recommend Operating Conditions at Ta=25°C | Parameter | Symbol | Conditions | Ratings | Unit | |--------------------------|-----------------|------------|-------------|------| | Operating Supply Voltage | V _{DD} | | 4.5 to 25 | V | | Operating Temperature | Topr | | -40 to +125 | °C | ### **Electrical Characteristics** (AC Characteristics) at Ta=25°C, V_{DD}=18V, V_{IN}=5V | Parameter | Symbol | Conditions | Ratings | | | Unit | |--------------------|------------------|------------------------|---------|-----|-----|-------| | | | Conditions | min | typ | max | OTIIL | | Turn-On Rise Time | t _r | C _L =1000pF | | 30 | 45 | ns | | Turn-Off Fall Time | tf | C _L =1000pF | | 30 | 45 | ns | | Delay Time | t _D 1 | C _L =1000pF | | 30 | 45 | ns | | | t _D 2 | CL=1000pF | | 45 | 60 | ns | ### **Electrical Characteristics** (DC Characteristics) at Ta=25°C, VDD=4.5 to 25V | Parameter | Symbol | Conditions | Ratings | | | Unit | | |--|-------------------|--|----------------------|-----|-----|----------|--| | Farameter | Syllibol | Conditions | min | typ | max | J OI III | | | Logic "1" Input Voltage | VIH | | 2.6 | | | V | | | Logic "0" Input Voltage | VIL | | | | 0.8 | V | | | Logic "1" Input Bias Current | I _{IN} + | V _{IN} =V _{DD} =25V | | 40 | 100 | μΑ | | | Logic "0" Input Bias Current | I _{IN} - | V _{IN} =0V or V _{DD} | -1 | | 1 | μΑ | | | High-level Output Voltage | VOH | IO=0A | V _{DD} -0.1 | | | V | | | Low-level Output Voltage | VOL | I _O =0A | | | 0.1 | V | | | V _{DD} Supply Current | Isupp | V _{DD} =10V, V _{IN} =3V, (both inputs) | | 1.0 | 4.5 | mA | | | | | V _{DD} =10V, V _{IN} =0V, (both inputs) | | | 0.2 | mA | | | Output High Short Circuit Pulsed Current | IO+ | V _{DD} =18V, PW≤10μs, V _{OUT} =0V | | 1.0 | | Α | | | Output Low Short Circuit Pulsed Current | IO- | V _{DD} =18V, PW≤10μs, V _{OUT} =18V | | 1.0 | | Α | | | Outrot On Braintan | ROUT | V _{DD} =18V, Iload=10mA, V _{OUT} ="H" | | 8 | 12 | Ω | | | Output On Resistance | NOU I | V _{DD} =18V, Iload=10mA, V _{OUT} ="L" | | 6 | 10 | Ω | | ### **Switching Time Test Circuit** ### **Ordering Information** | Devices | Package | Shipping | memo | | |---------------|---------|----------------|--------------------------|--| | TND316S-TL-2H | SOIC8 | 2,500pcs./reel | Pb Free and Halogen Free | | ### **Taping Specification** TND316S-TL-2H 1. Packing Format | Package Name | Carrier Tape | Maximum Number of devices | | | Packing format | | |--------------|--------------|---------------------------|-----------|-----------|--------------------------|--------------------------| | | Туре | contained (pcs) | | | | | | | | Reel | Inner box | Outer box | Inner BOX W206-112 | Outer BOX W207-124 | | SOIC8 | B202-101 | 2,500 | 12,500 | 25,000 | 5 reels contained | 2 inner boxes contained | | | | | | | Dimensions :mm(external) | Dimensions :mm(external) | | | | | | | 340×95×340 | 360×210×375 | ### 2. Taping configuration ### 2-1. Carrier tape size (unit: mm) ### 2-2. Device placement direction ### 2-3. Leader portion and trailer portion (unit: mm) ### **Outline Drawing** TND316S-TL-2H # Mass (g) Unit 0.082 mm 4 '±4 0.77±0.03 4 '±4 0.75±0.065 *|:Lot Indication. *2:Lot Indication. Some products have no Lot indication. ### **Land Pattern Example** ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa