

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TND323VD

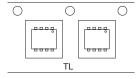
Excellent Power Device

Inverter and buffer driver for general purpose

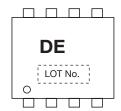
www.onsemi.com

Features

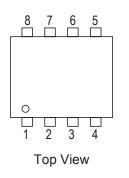
- · Inverter buffer
- · Monolithic structure (High voltage CMOS process adopted)
- · Withstand voltage of 25V is assured
- Wide range of operating voltage: 4.5V to 25V
- Peak output current : IO+/IO-=0.8A/1A
- Fast switching time (30ns typical at 1000pF load)
- Fully compatible input to TTL / CMOS (VIH=up to 2.6V, at VDD=4.5 to 25V)
- · Built-in input pull-down resistance


Specifications

Absolute Maximum Ratings at Ta=25°C


Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	V _{DD}		0 to 25	V
Input Voltage	VIN		GND-0.3 to V _{DD} +0.3	V
Allowable Power Dissipation	P _D max		0.2	W
Junction Temperature	Tj		-55 to +150	°C
Storage Temperature	Tstg		-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


Packing Type: TL

Marking

Pin Assignment

TND323VD-TL-E TND323VD-TL-H

1: INA 2: OUTA 3: OUTB 4: INB 5: GND 6: VDD 7: VDD 8: VDD

SOT-28FL / VEC8

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

TND323VD

Recommend Operating Conditions at Ta=25°C

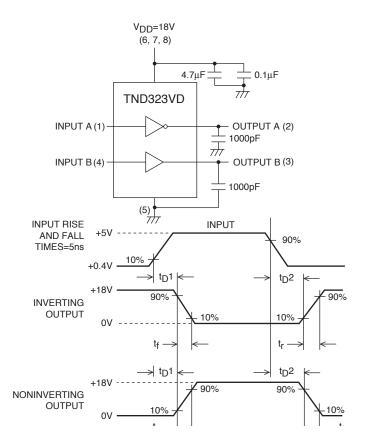
Parameter	Symbol	Conditions	Ratings	Unit
Operating Supply Voltage	V _{DD}		4.5 to 25	V
Operating Temperature	Topr		-40 to +125	°C

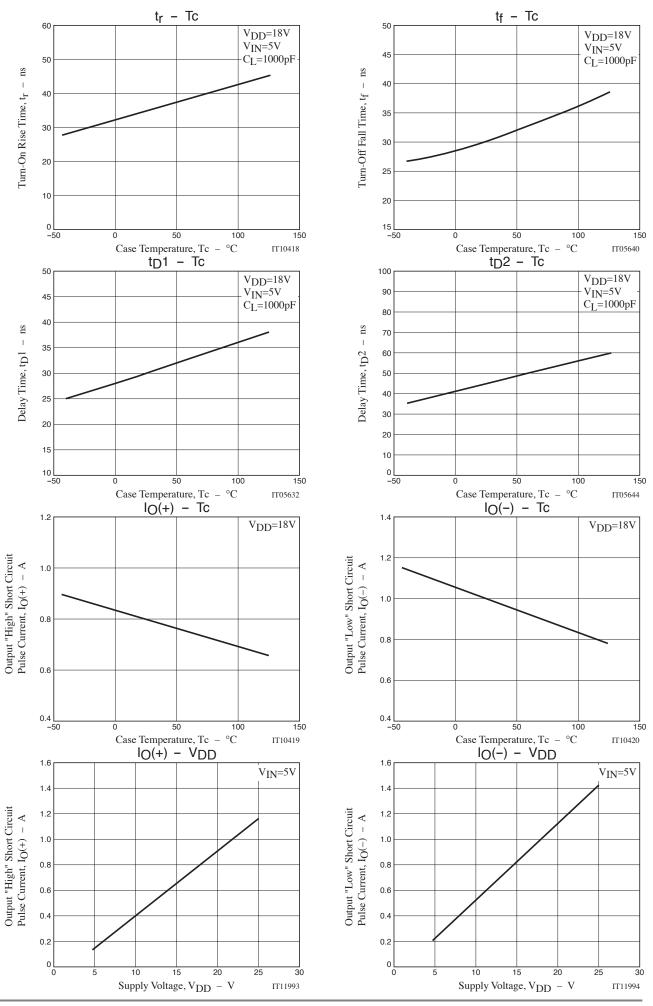
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

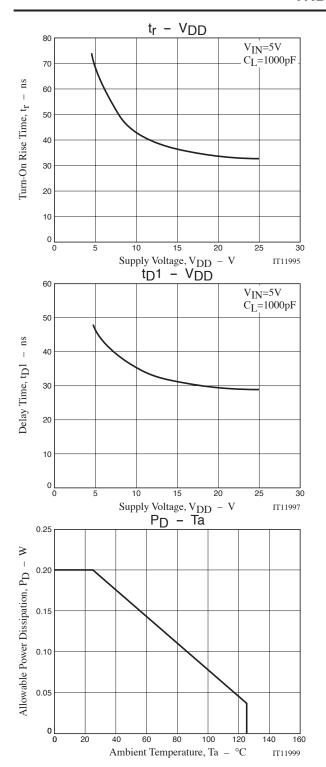
Electrical Characteristics (AC Characteristics) at Ta=25°C, VDD=18V, VIN=5V

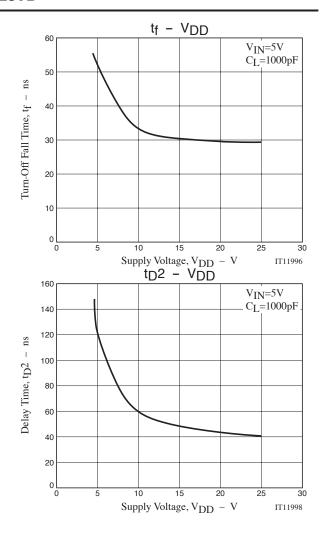
Parameter	Symbol	Conditions		Ratings		
			min	typ	max	- Unit
Turn-On Rise Time	t _r	C _L =1000pF		35	50	ns
Turn-Off Fall Time	tf	CL=1000pF		30	45	ns
Delay Time	t _D 1	C _L =1000pF		30	45	ns
	t _D 2	C _L =1000pF		45	60	ns

Electrical Characteristics (DC Characteristics) at Ta=25°C, VDD=4.5 to 25V

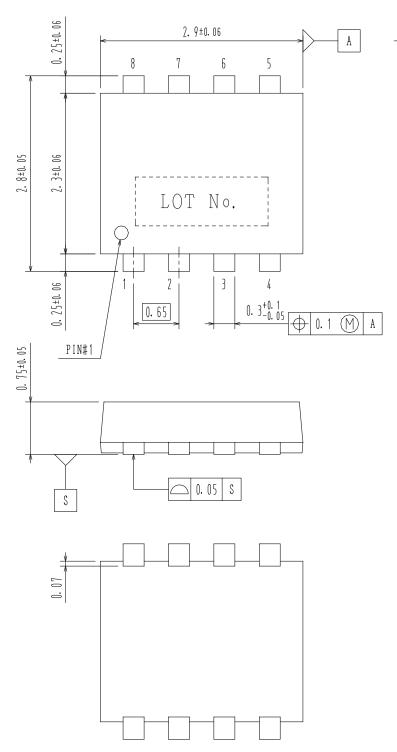

Parameter	Symbol Conditions	Conditions		Ratings		- Unit
		min	typ	max		
Logic "1" Input Voltage	VIH		2.6			V
Logic "0" Input Voltage	VIL				0.8	V
Logic "1" Input Bias Current	IIN+	V _{IN} =V _{DD} =25V		40	100	μΑ
Logic "0" Input Bias Current	IIN-	V _{IN} =0V	-1		1	μΑ
High-level Output Voltage	VOH	I _O =0A	V _{DD} -0.1			V
Low-level Output Voltage	VOL	IO=0A			0.1	V
V _{DD} Supply Current	launa	V _{DD} =10V, V _{IN} =3V, (both inputs)		1.0	4.5	mA
	Isupp	V _{DD} =10V, V _{IN} =0V, (both inputs)			0.2	mA
Output High Short Circuit Pulsed Current	IO+	V _{DD} =18V, PW≤10μs, V _{OUT} =0V		0.8		Α
Output Low Short Circuit Pulsed Current	10-	V _{DD} =18V, PW≤10μs, V _{OUT} =18V		1.0		Α
Output On Resistance	ROUT	VDD=18V, Iload=10mA, VOUT="H"		11	16.5	Ω
	nou1	V _{DD} =18V, Iload=10mA, V _{OUT} ="L"		6	10	Ω

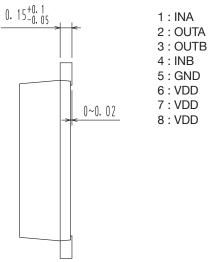

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Block Diagram

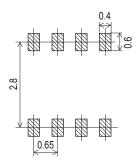


Switching Time Test Circuit


Package Dimensions


unit : mm

TND323VD-TL-E, TND323VD-TL-H


SOT-28FL / VEC8

CASE 318AH ISSUE O

Recommended Soldering Footprint

TND323VD

ORDERING INFORMATION

Device	Package	Shipping	memo	
TND323VD-TL-E	SOT-28FL / VEC8	3,000pcs. / Tape and Reel	Pb-Free	
TND323VD-TL-H	SOT-28FL / VEC8	3,000pcs. / Tape and Reel	Pb-Free and Halogen Free	

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf . SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent r