imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

transphorm

TP65H035WS

650V Cascode GaN FET in TO-247 (source tab)

Description

The TP65H035WS 650V, $35m\Omega$ Gallium Nitride (GaN) FET is a normally-off device. It combines state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies-offering superior reliability and performance.

Transphorm GaN offers improved efficiency over silicon. through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

Related Literature

- <u>AN0009</u>: Recommended External Circuitry for GaN FETs
- AN0003: Printed Circuit Board Layout and Probing
- AN0010: Paralleling GaN FETs

Ordering Information

Part Number	Package	Package Configuration
TP65H035WS	3 lead TO-247	Source

Cascode Schematic Symbol

Cascode Device Structure

S

Features

- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- · Robust design, defined by
 - Intrinsic lifetime tests
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low Q_{RR}
- Reduced crossover loss
- RoHS compliant and Halogen-free packaging

Benefits

- Improves efficiency/operation frequencies over Si
- Enables AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- · Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

Applications

- Datacom
- Broad industrial
- PV inverter
- Servo motor

Key Specifications

V _{DSS} (V)	650
V _{(TR)DSS} (V)	800
$R_{\text{DS(on)eff}}(m\Omega)$ max*	41
Q _{RR} (nC) typ	178
Q _G (nC) typ	24

* Dynamic on-resistance; see Figures 17 and 18

Common Topology Power Recommendations CCM bridgeless totem-pole* 3770W max

4600W max Hard-switched inverter** Conditions: F_{SW}=45kHz; T_J=115°C; T_{HEATSINK}=90°C; insulator between device and heatsink (6 mil Sil-Pad® K-10); power de-rates at lower

voltages with constant current

VIN=230VAC: VOUT=390VDC **

VIN=380VDC; VOUT=240VAC

Absolute Maximum Ratings (Tc=25 °C unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit
V _{DSS}	Drain to source voltage $(T_J = -55^{\circ})$	650		
V _{(TR)DSS}	Transient drain to source voltage	1	800	V
V _{GSS}	Gate to source voltage		±20	
PD	Maximum power dissipation @Tc=	25°C	156	W
	Continuous drain current @Tc=25°C b		46.5	A
ID	Continuous drain current @Tc=100°C b		29.5	A
I _{DM}	Pulsed drain current (pulse width: 10µs)		240	A
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive °		1800	A/µs
(di/dt) _{RDMT}	Reverse diode di/dt, transient d		3800	A/µs
Tc	Operating temperature	Case	-55 to +150	°C
ΤJ		Junction	-55 to +150	°C
Ts	Storage temperature		-55 to +150	°C
T _{SOLD}	Soldering peak temperature ^e		260	°C

Notes:

a. In off-state, spike duty cycle D<0.01, spike duration <1µs

b. For increased stability at high current operation, see Circuit Implementation on page 3

c. Continuous switching operation

d. \leq 300 pulses per second for a total duration \leq 20 minutes

e. For 10 sec., 1.6mm from the case $% \left({{{\rm{T}}_{\rm{T}}}} \right)$

Thermal Resistance

Symbol	Parameter	Maximum	Unit
R _{ejc}	Junction-to-case	0.8	°C/W
R _{OJA}	Junction-to-ambient	40	°C/W

Circuit Implementation

Simplified Half-bridge Schematic

Efficiency vs Output Power

Recommended gate drive: (0V, 12V) with $R_G = 30\Omega$

Required DC Link RC Snubber (RC _{DCL}) ^a	Recommended Switching Node RC Snubber (RC_{SN}) ^{b, c}		
[10nF + 8Ω] x 2	200pF + 5Ω		

Notes:

a. $\mathsf{RC}_{\mathsf{DCL}}$ should be placed as close as possible to the drain pin

b. A switching node RC snubber (C, R) is recommended for high switching currents (>70% of IRDMC1 or IRDMC2; see page 5 for IRDMC1 and IRDMC2)

c. I_{RDM} values can be increased by increasing R_G and C_{SN}

TP65H035WS

Electrical Parameters (T_=25°C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Forward D	evice Characteristics					
V _{(BL)DSS}	Drain-source voltage	650	_	_	V	V _{GS} =0V
V _{GS(th)}	Gate threshold voltage	3.3	4	4.8	V	
$\Delta V_{GS(th)}/T_J$	Gate threshold voltage temperature coefficient	_	-6.5	_	mV/°C	V _{DS} =V _{GS} , I _D =1mA
D	Drain course on registence a	_	35	41		V _{GS} =10V, I _D =30A
nDS(on)eff		_	72	_	11152	V _{GS} =10V, I _D =30A, T _J =150°C
loss	Drain-to-source leakage current	_	2.5	25	ΠA	V _{DS} =650V, V _{GS} =0V
		_	15	_	μΛ	V _{DS} =650V, V _{GS} =0V, T _J =150°C
	Gate-to-source forward leakage current	_	_	400	<u>ب</u> م	V _{GS} =20V
IGSS	Gate-to-source reverse leakage current	_	_	-400		V _{GS} =-20V
CISS	Input capacitance	_	1500	_		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz
Coss	Output capacitance	_	190	_	pF	
C _{RSS}	Reverse transfer capacitance	_	10	_		
C _{O(er)}	Output capacitance, energy related ^b	_	290	_	ъĘ	V_{GS} =0V, V_{DS} =0V to 400V
C _{O(tr)}	Output capacitance, time related °	_	440	_	рг	
Q _G	Total gate charge	_	24	36		
Q _{GS}	Gate-source charge	_	10	_	nC	V_{DS} =400V, V_{GS} =0V to 10V, I_D =32A
Q _{GD}	Gate-drain charge	_	6	_		
Qoss	Output charge	_	178	_	nC	V_{GS} =0V, V_{DS} =0V to 400V
t _{D(on)}	Turn-on delay	_	69	_		
t _R	Rise time	_	13.5	_	ne	V_{DS} =400V, V_{GS} =0V to 12V, I_D =32A, R_G = 30 Ω
t _{D(off)}	Turn-off delay	_	98.5	_		
t _F	Fall time	_	11.5	_		

Notes:

a. Dynamic on-resistance; see Figures 17 and 18 for test circuit and conditions

b. Equivalent capacitance to give same stored energy as V_{DS} rises from 0V to 400V

c. Equivalent capacitance to give same charging time as V_{DS} rises from OV to 400V

TP65H035WS

Electrical Parameters (T_=25°C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Reverse Device Characteristics						
Is	Reverse current	_	_	29.5	A	V_{GS} =0V, T _C =100°C ≤20% duty cycle
N		-	1.8	_	V	V_{GS} =0V, I_{S} =32A
VSD		_	1.3	_		V _{GS} =0V, I _S =15A
t _{RR}	Reverse recovery time	_	65	_	ns	I _S =30A, V _{DD} =400V,
Q _{RR}	Reverse recovery charge	_	178	_	nC	di/dt=1000A/µs
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive b	_	_	1800	A∕µs	
IRDMC1	Reverse diode switching current, repeti- tive (dc) ^{c, e}	_	_	28	A	Circuit implementation and parameters on page 3
I _{RDMC2}	Reverse diode switching current, repeti- tive (ac) ^{c, e}	_	_	35	A	Circuit implementation and parameters on page 3
(di/dt) _{RDMT}	Reverse diode di/dt, transient ^d	_	_	3800	A∕µs	
I _{RDMT}	Reverse diode switching current, transi- ent ^{d,e}	_	_	45	A	Circuit implementation and parameters on page 3

Notes:

a. Includes dynamic $R_{DS(on)}$ effect

b. Continuous switching operation

c. Definitions: dc = dc-to-dc converter topologies; ac = inverter and PFC topologies, 50-60Hz line frequency

d. \leq 300 pulses per second for a total duration \leq 20 minutes

e. I_{RDM} values can be increased by increasing R_{G} and C_{SN} on page 3

Figure 1. Typical Output Characteristics T_J=25 $^{\circ}$ C Parameter: V_{GS}

6

Typical Characteristics (Tc=25 $^{\circ}$ C unless otherwise stated)

Figure 5. Typical Capacitance V_{GS}=OV, f=1MHz

Figure 6. Typical Coss Stored Energy

Figure 8. Forward Characteristics of Rev. Diode $I_{S}{=}f(V_{SD}), \ parameter; \ T_{J}$

Figure 9. Power Dissipation

Figure 10. Current Derating Pulse width \leq 10µs, V_{GS} \geq 10V

Figure 11. Safe Operating Area Tc=25°C

Test Circuits and Waveforms

Figure 13. Switching Time Test Circuit (see circuit implementation on page 3 for methods to ensure clean switching)

Figure 15. Diode Characteristics Test Circuit

R_{SNS}

DUT

VDS

Ŧ

Figure 14. Switching Time Waveform

Figure 16. Diode Recovery Waveform

Vgs

Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS
Minimize lead length of TO-220 and TO-247 package when	Use long traces in drive circuit, long lead length of the
mounting to the PCB	devices
Use shortest sense loop for probing; attach the probe and its	Use differential mode probe or probe ground clip with long
ground connection directly to the test points	wire
See AN0003: Printed Circuit Board Layout and Probing	

GaN Design Resources

The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

Mechanical

3 Lead TO-247 Package

TP65H035WS

Revision History

Version	Date	Change(s)
0	11/22/2017	Initial
1	6/13/2018	Datasheet completed