imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

transphorm

TPH3206L Series

650V GaN FET PQFN Series

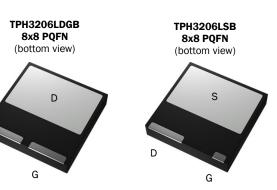
Not recommended for new designs

Description

The TPH3206L Series 650V, $150m\Omega$ Gallium Nitride (GaN) FETs are normally-off devices. They combine state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies—offering superior reliability and performance.

Transphorm GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

Related Literature


- AN0009: Recommended External Circuitry for GaN FETs
- AN0003: Printed Circuit Board Layout and Probing

Product Series and Ordering Information

Part Number*	Package	Package Configuration
TPH3206LDGB**	8x8 PQFN	Drain
TPH3206LSB	8x8 PQFN	Source

* Add "-TR" suffix for tape and reel; see page 14

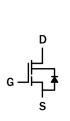
** LDGB package offers larger gate pad

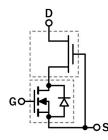
Features

- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- Robust design, defined by
 - Intrinsic lifetime tests
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low QRR
- Reduced crossover loss
- · RoHS compliant and Halogen-free packaging

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- Achieves increased efficiency in both hard- and softswitched circuits
- · Easy to drive with commonly-used gate drivers


Applications


- Datacom
- Broad industrial
- PV inverter
- Servo motor

Key Specifications

V _{DSS} (V)	650
V(TR)DSS (V)	800
$R_{DS(on)eff}(m\Omega)$ max*	180
Q _{RR} (nC) typ	52
Q _G (nC) typ	6.2

* Dynamic on-resistance; see Figures 19 and 20

Cascode Schematic Symbol

Cascode Device Structure

Absolute Maximum Ratings (Tc=25 °C unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit	
V _{DSS}	Drain to source voltage (T _J = -	55°C to 150°C)	650		
V _{(TR)DSS}	Transient drain to source volta	age ^a	800	V	
V _{GSS}	Gate to source voltage		±18		
PD	Maximum power dissipation @	₽Tc=25°C	81	W	
	Continuous drain current @Tc=	=25°C ^b	16	А	
I _D	Continuous drain current @Tc=100°C b		10	А	
I _{DM}	Pulsed drain current (pulse width: 10µs)		60	А	
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive °		1200	A/µs	
(di/dt) _{RDMT}	Reverse diode di/dt, transient	Reverse diode di/dt, transient d		A/µs	
Tc	Operating temperature	Case	-55 to +150	°C	
ΤJ	 Operating temperature 	Junction	-55 to +150	°C	
Ts	Storage temperature	Storage temperature		°C	
T _{SOLD}	Soldering peak temperature ^e		260	°C	

Notes:

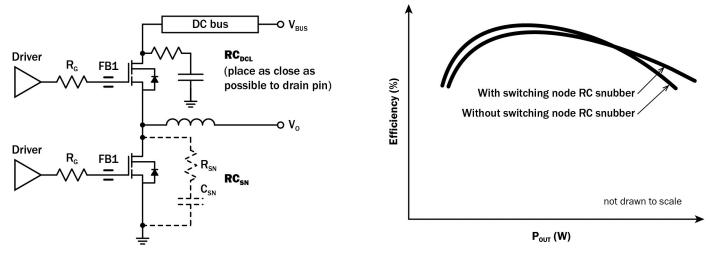
a. In off-state, spike duty cycle D<0.01, spike duration <1µs

b. For increased stability at high current operation, see Circuit Implementation on page 3

c. Continuous switching operation

d. ≤300 pulses per second for a total duration ≤20 minutes

e. For 10 sec., 1.6mm from the case


Thermal Resistance

Symbol	Parameter	Typical	Unit
R _{0JC}	Junction-to-case	1.55	°C/W
R _{ØJA}	Junction-to-ambient ^a	45	°C/W

Notes:

a. Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper area and 70µm thickness)

Circuit Implementation

Simplified Half-bridge Schematic

Efficiency vs Output Power

Recommended gate drive: (0V, 8-10V) with $R_{G(tot)} = 25\Omega$, where $R_{G(tot)} = R_{G} + R_{DRIVER}$

Gate Ferrite Bead (FB1)	Required DC Link RC Snubber (RC _{DCL}) a	Recommended Switching Node RC Snubber (RC _{SN}) ^{b, c}
MMZ1608Q121BTA00	10nF + 8Ω	22pF + 15Ω

Notes:

a. RC_{DCL} should be placed as close as possible to the drain pin

b. A switching node RC snubber (C, R) is recommended for high switching currents (>70% of I_{RDMC1} or I_{RDMC2}; see page 5 for I_{RDMC1} and I_{RDMC2})

c. I_{RDM} values can be increased by increasing R_G and C_{SN}

Electrical Parameters (T_=25°C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward	Device Characteristics		•		•	·	
$V_{(BL)DSS}$	Drain-source voltage	650	_	_	V	V _{GS} =OV	
$V_{\text{GS(th)}}$	Gate threshold voltage	1.65	2.1	2.6	V	V _{DS} =V _{GS} , I _D =500µA	
Р	Drain course on registence a	_	150	180	mΩ	V _{GS} =8V, I _D =10A	
$R_{DS(on)eff}$	Drain-source on-resistance ^a	_	340	_		V _{GS} =8V, I _D =10A, T _J =150°C	
		_	2.5	30		V _{DS} =650V, V _{GS} =0V	
IDSS	Drain-to-source leakage current	_	8	_	μA	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
	Gate-to-source forward leakage current	_	-	100	nA	V _{GS} =18V	
I _{GSS}	Gate-to-source reverse leakage current	_	_	-100		V _{GS} =-18V	
CISS	Input capacitance	_	720	_			
Coss	Output capacitance	_	46	_	pF	V _{GS} =0V, V _{DS} =480V, <i>f</i> =1MHz	
C _{RSS}	Reverse transfer capacitance	_	5.5	-			
$C_{O(er)}$	Output capacitance, energy related b	_	65	_	ъĘ	V_{GS} =0V, V_{DS} =0V to 480V	
C _{O(tr)}	Output capacitance, time related °	_	106	_	pF		
Q_{G}	Total gate charge	_	6.2	_			
Q_{GS}	Gate-source charge	_	2.1	_	nC	V_{DS} =100V, V_{GS} =0V to 4.5V, I_{D} =10A	
Q_{GD}	Gate-drain charge	_	2.2	_			
Qoss	Output charge	_	44.4	_	nC	V_{GS} =0V, V_{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	6	_			
t _R	Rise time	_	4.5	_		V _{DS} =480V, V _{GS} =0V to 10V,	
$t_{\text{D(off)}}$	Turn-off delay	-	9.7	-	ns	$I_D=10A, R_G=22\Omega$	
t _F	Fall time	_	4	_	1		

Notes:

a.

Dynamic on-resistance; see Figures 19 and 20 for test circuit and conditions Equivalent capacitance to give same stored energy as V_{DS} rises from 0V to 400V b.

Equivalent capacitance to give same charging time as V_{DS} rises from OV to 400V c.

Electrical Parameters (T_=25°C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Reverse Dev	ice Characteristics	1	1	1	1		
ls	Reverse current	_	_	10	A	V _{GS} =0V, T _C =100°C, ≤25% duty cycle	
		_	2.4	-		V _{GS} =0V, I _S =10A	
V _{SD}	Reverse voltage ^a	_	3.7	-	V	V _{GS} =0V, I _S =10A, T _J =150°C	
		_	1.7	-		V _{GS} =0V, I _S =5A	
t _{RR}	Reverse recovery time	_	17	_	ns	I _S =11A, V _{DD} =400V,	
Q _{RR}	Reverse recovery charge	_	52	_	nC	di/dt=2000A/µs	
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive b	_	-	1200	A/µs		
IRDMC1	Reverse diode switching current, repeti- tive (dc) ^{c, e}	_	_	11	A	Circuit implementation and parameters on page 3	
I _{RDMC2}	Reverse diode switching current, repeti- tive (ac) ^{c, e}	_	_	14	A	Circuit implementation and parameters on page 3	
(di/dt) _{RDMT}	Reverse diode di/dt, transient d	_	-	2400	A/µs		
I _{RDMT}	Reverse diode switching current, transient d,e	_	-	18	A	Circuit implementation and parameters on page 3	

Notes:

a. Includes dynamic R_{DS(on)} effect

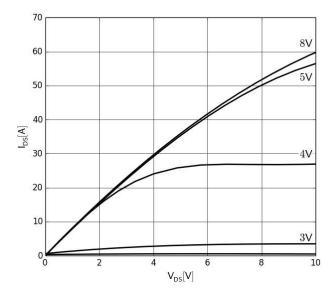
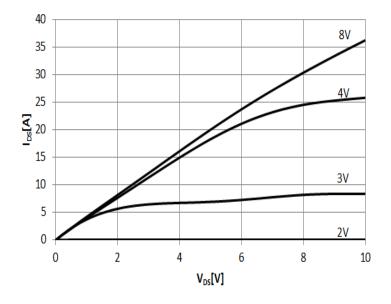
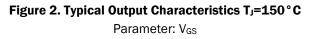
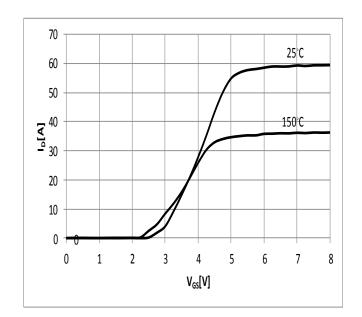
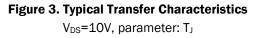
b. Continuous switching operation

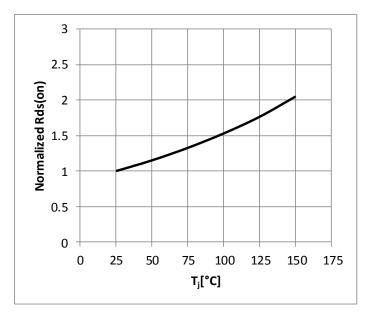
c. Definitions: dc = dc-to-dc converter topologies; ac = inverter and PFC topologies, 50-60Hz line frequency

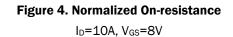
d. \leq 300 pulses per second for a total duration \leq 20 minutes

e. $\ \ I_{RDM}$ values can be increased by increasing R_G and C_{SN} on page 3

Typical Characteristics (Tc=25 °C unless otherwise stated)


Figure 1. Typical Output Characteristics $T_J=25$ °C Parameter: V_{GS}



Typical Characteristics (Tc=25 $^{\circ}$ C unless otherwise stated)

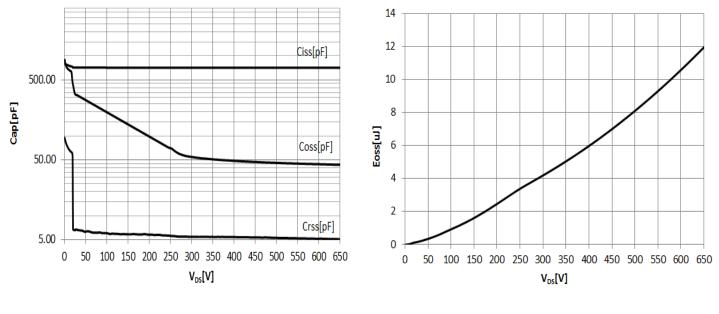
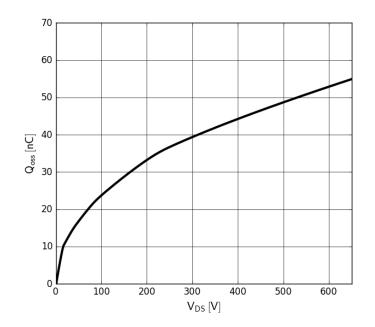
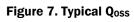




Figure 5. Typical Capacitance

 V_{GS} =0V, f=1MHz

Figure 6. Typical Coss Stored Energy

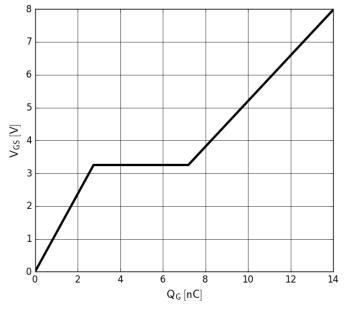
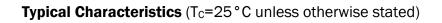
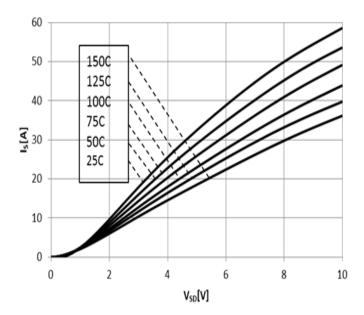
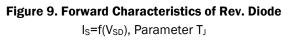
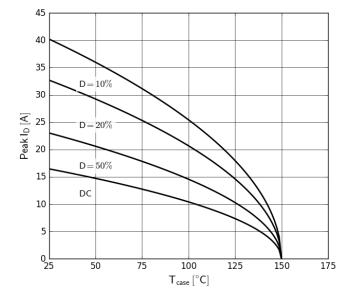






Figure 8. Typical Gate Charge I_{DS}=10A, V_{DS}=400V

Figure 10. Current Derating Pulse width = 100µs

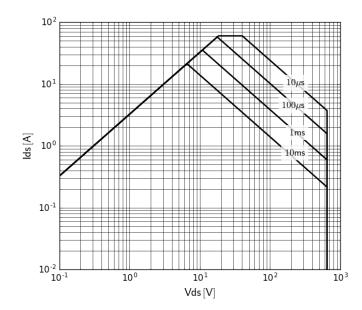
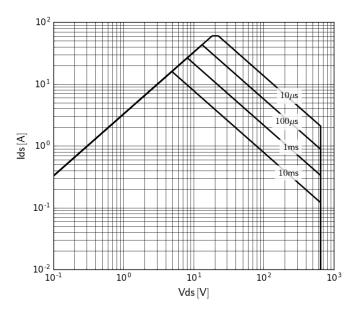
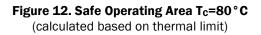
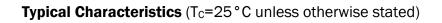




Figure 11. Safe Operating Area Tc=25°C (calculated based on thermal limit)

100

80


60

40

20

0 L

 $\mathsf{P}_{\mathrm{tot}}\left[\mathsf{W}\right]$

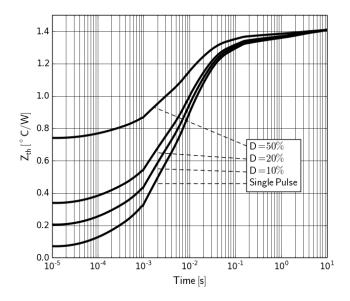
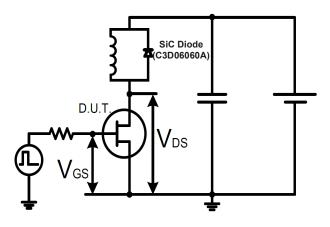


Figure 14. Power Dissipation

50


100

 $\mathsf{T}_{\mathsf{case}}\left[^{\circ}\mathsf{C}\right]$

150

200

Test Circuits and Waveforms

Figure 15. Switching Time Test Circuit (see circuit implementation on page 3 for methods to ensure clean switching)

Figure 17. Diode Characteristics Test Circuit

 \mathbf{R}_{SNS}

DUT

VDS

Ŧ

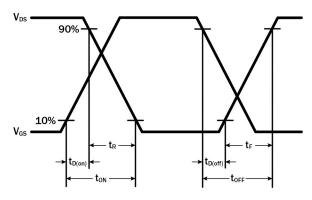


Figure 16. Switching Time Waveform

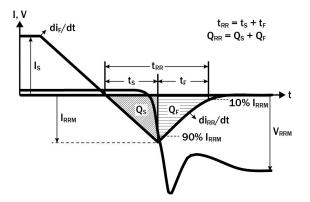
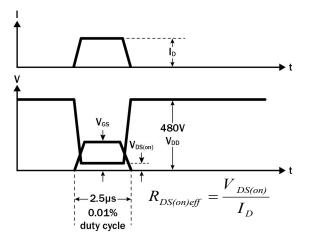



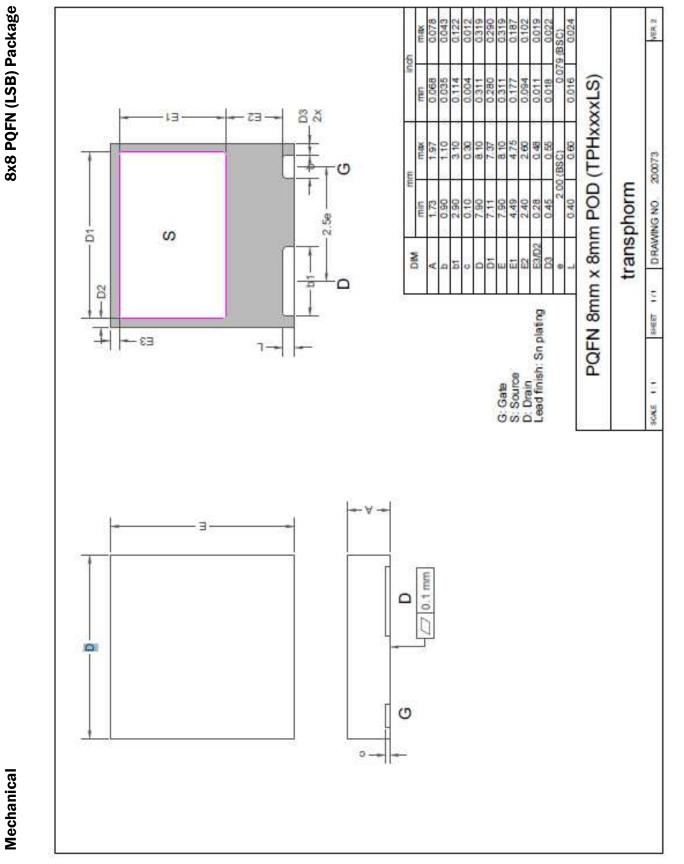
Figure 18. Diode Recovery Waveform

Vgs

Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

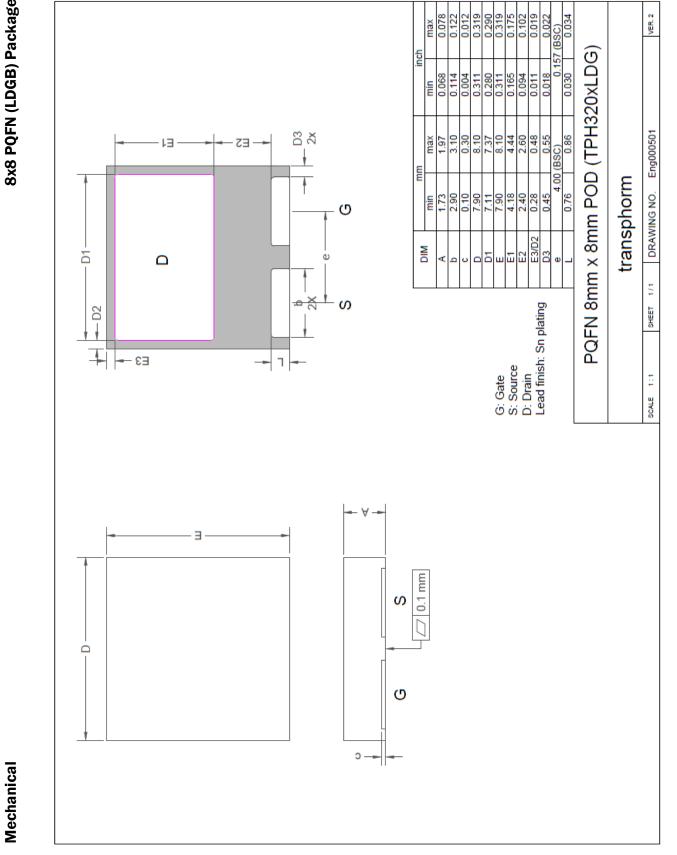
Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.


When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	-

GaN Design Resources

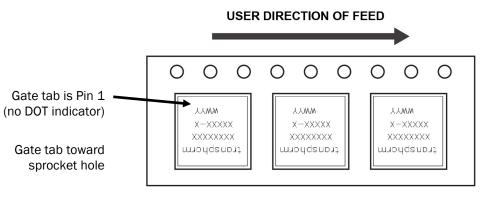
The complete technical library of GaN design tools can be found at transphormusa.com/design:


- Reference designs
- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

8x8 PQFN (LSB) Package

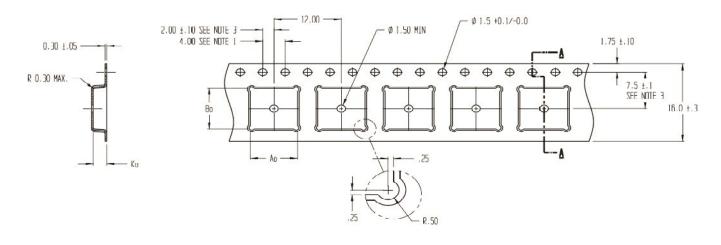
transphormusa.com

TPH3206L Series


8x8 PQFN (LDGB) Package

May 17, 2018 tph32061.5

transphormusa.com


PQFN Tape and Reel Information

Product Orientation

- Leader empty pockets: 400mm/15.75" min •
- Trailer empty pickets: 160mm/6.3" min
- Quantity per reel: 500 pcs

Carrier Tape Dimension

Ao = 8.40 Bo = 8.40 Ko = 2.40

NOTES:

1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2

2. CANGER IN COMPLIANCE WITH EINA 481 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

Revision History

Version	Date	Change(s)	
0	12/12/2016	Release L series datasheet; B versions integrate bleed resistor	
1	4/19/2017	Updated ordering information	
2	11/7/2017	Updated Figures 11 & 12 (pg 7), effective on-resistance symbol to R _{DS(on)eff} to adhere to new JEDEC standards; Added switching current values (pg 2), Circuit Implementation (pg 3), Q _{OSS} value (pg 4), Figures 7 & 8 (pg 6)	
3	2/16/2018	Updated R _{OJA}	
4	3/27/2018	Removed TPH3206LDB	
5	5/17/2018	Discontinued	