imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

transphorm

TPH3207WS

650V Cascode GaN FET in TO-247 (source tab)

Description

The TPH3207WS 650V, $35m\Omega$ gallium nitride (GaN) FET is a normally-off device. Transphorm GaN FETs offer better efficiency through lower gate charge, faster switching speeds, and smaller reverse recovery charge, delivering significant advantages over traditional silicon (Si) devices.

Transphorm is a leading-edge wide band gap supplier with world-class innovation and a portfolio of fully-qualified GaN transistors that enables increased performance and reduced overall system size and cost.

Related Literature

- AN0009: Recommended External Circuitry for GaN FETs
- <u>AN0003</u>: Printed Circuit Board Layout and Probing

Ordering Information

Part Number	Package	Package Configuration
TPH3207WS	3 Lead TO-247	Common Source

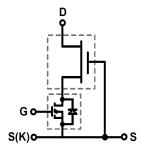
TPH3207WS

Features

- Easy to drive—compatible with standard gate drivers
- Low conduction and switching losses
- Low Qrr of 175nC-no free-wheeling diode required
- GSD pin layout improves high speed design
- JEDEC-qualified GaN technology
- RoHS compliant and Halogen-free

Benefits

- · Increased efficiency through fast switching
- Increased power density
- Reduced system size and weight
- Enables more efficient topologies—easy to implement bridgeless totem-pole designs
- Lower BOM cost


Applications

- · Renewable energy
- Industrial
- Automotive
- Telecom and datacom
- Servo motors

Key Specifications

V _{DS} (V) min	650
V _{TDS} (V) max	800
$R_{DS(on)}(m\Omega)$ max*	41
Q _{rr} (nC) typ	175
Qg (nC) typ	28

* Dynamic R_(on)

Cascode Device Structure

Absolute Maximum Ratings (Tc=25 °C unless otherwise stated)

Symbol	Parameter	Limit Value	Unit
I _{D25°C}	Continuous drain current @Tc=25°C ª	50	A
ID100°C	Continuous drain current @Tc=100°C a	31.5	A
I _{DM}	Pulsed drain current (pulse width: 10µs)	240	A
V _{DSS}	Drain to source voltage	650	V
V _{TDS}	Transient drain to source voltage b	800	V
V _{GSS}	Gate to source voltage	±18	V
P _{D25°C}	Maximum power dissipation	178	W
ΤJ	Operating junction temperature	-55 to +150	°C
Ts	Storage temperature	-55 to +150	°C
T _{CSOLD}	Soldering peak temperature °	260	°C

Thermal Resistance

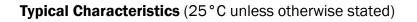
Symbol	Parameter	Typical	Unit
R _{0JC}	Junction-to-case	0.7	°C/W
R _{OJA}	Junction-to-ambient	40	°C/W

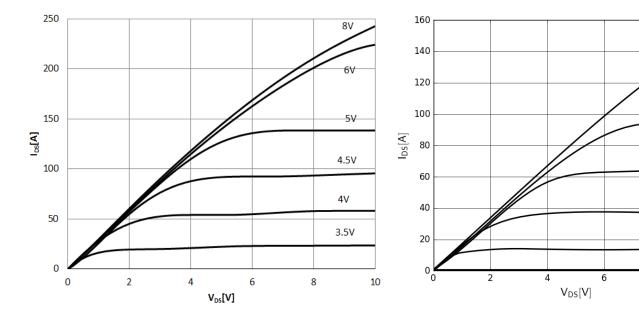
Notes:

For high current operation, see application note AN0009 In off-state, spike duty cycle D<0.01, spike duration <1µs For 10 sec., 1.6mm from the case a.

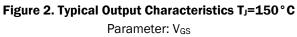
b.

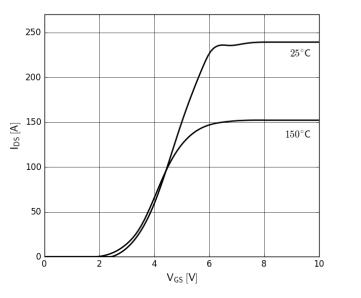
c.

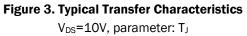

Electrical Parameters (Tc=25 °C unless otherwise stated)

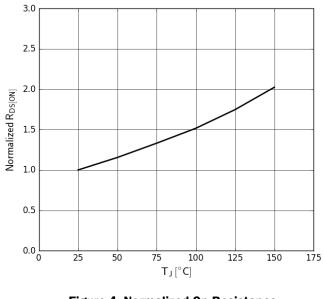

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward	Device Characteristics		•			·	
V _{DSS-MAX}	Maximum drain-source voltage	650	_	_	V	V _{GS} =OV	
$V_{\text{GS}(\text{th})}$	Gate threshold voltage	1.65	2.1	2.65	V	V _{DS} =V _{GS} , I _D =0.7mA	
D	Drain-source on-resistance (T_=25°C) a	_	35	41		V _{GS} =8V, I _D =32A, T _J =25°C	
$R_{DS(on)}$	Drain-source on-resistance (T_=150°C) a	_	72	_	mΩ	V _{GS} =8V, I _D =32A, T _J =150°C	
I _{DSS}	Drain-to-source leakage current (Tj=25°C)	_	5	50	μA	V _{DS} =650V, V _{GS} =0V, T _J =25°C	
IDSS	Drain-to-source leakage current (Tj=150°C)		15	_	μΑ	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
I _{GSS}	Gate-to-source forward leakage current	—	_	100	nA	V _{GS} =18V	
IGSS	Gate-to-source reverse leakage current	—	_	-100		V _{GS} =-18V	
CISS	Input capacitance	_	2200	_			
Coss	Output capacitance	_	202	_	pF	V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
C_{RSS}	Reverse transfer capacitance	—	27	_			
$C_{O(er)}$	Output capacitance, energy related b	_	280	_	pF	V_{GS} =0V, V_{DS} =0V to 400V	
$C_{O(tr)}$	Output capacitance, time related °	_	404	_			
Qg	Total gate charge	_	28	42		V_{DS} =400V, V_{GS} =0V to 8V, I_{D} =32/	
Q_{gs}	Gate-source charge	_	10	_	nC		
Q_{gd}	Gate-drain charge	—	6	_			
t _{d(on)}	Turn-on delay	_	56	_			
tr	Rise time	_	12	_	nc	V_{DS} =400V, V_{GS} =0V to 10V, I_D =32A, 0.5A gate drive, test circuit as in Figure 13	
T _{d(off)}	Turn-off delay	_	79	_	ns		
t _f	Fall time	_	9	_			
Reverse	Device Characteristics			1	1	1	
Is	Reverse current	_	_	31.5	A	V _{GS} =0V, T _C =100°C ≤50% Duty Cycle	
	Reverse voltage ^a	_	1.9	_	V	V _{GS} =0V, I _S =32A, T _J =25°C	
Vsd		_	1.4	_		V _{GS} =0V, I _S =16A, T _J =25°C	
t _{rr}	Reverse recovery time	_	42		ns	I _S =32A, V _{DD} =400V,	
Q _{rr}	Reverse recovery charge	_	175	_	nC di/dt=1000A/µs, TJ=25°C		

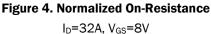
Dynamic value a.


b.


Equivalent capacitance to give same stored energy from 0V to 400V Equivalent capacitance to give same charging time from 0V to 400V c.

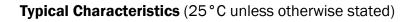


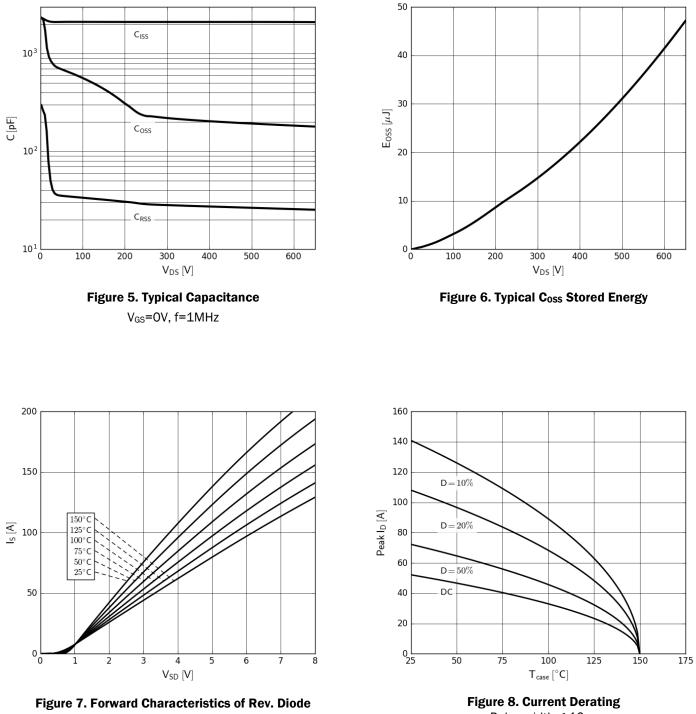




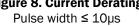
8V

4.5V


 $4\mathsf{V}$


3. 5V

3V


10

8

 $I_{S}=f(V_{SD})$; parameter: T_{J} ; pulse width = 20µs

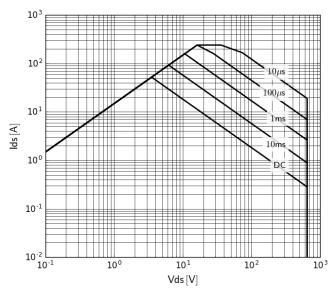


Figure 9. Safe Operating Area Tc=25°C (calculated based on thermal limit)

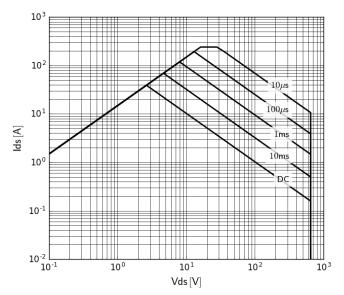


Figure 10. Safe Operating Area Tc=80°C (calculated based on thermal limit)

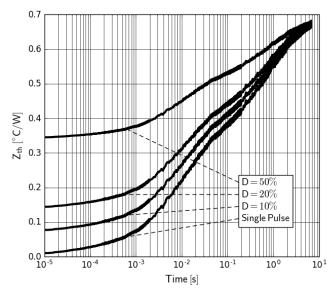


Figure 11. Transient Thermal Resistance

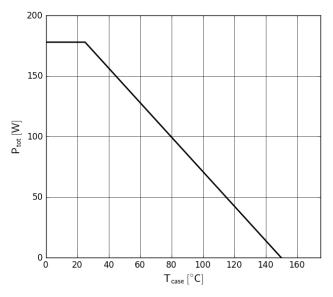


Figure 12. Power Dissipation

Test Circuits and Waveforms

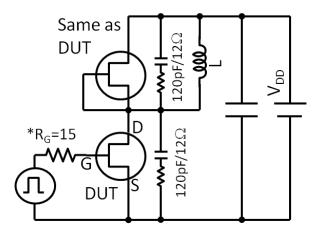


Figure 13. Switching Time Test Circuit *driver internal series resistance (no external gate resistor) (See app note AN0009 for methods to ensure clean switching)

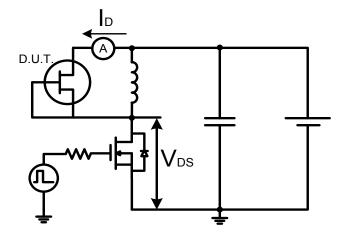


Figure 15. Test Circuit for Diode Characteristics

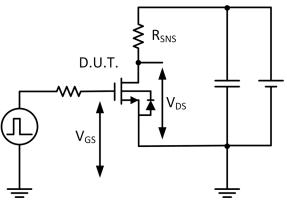


Figure 17. Test Circuit for Dynamic RDS(on)

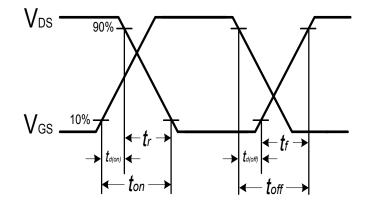
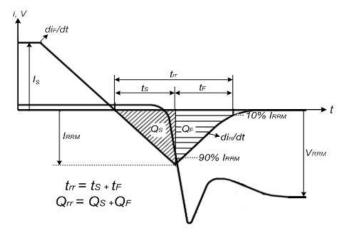



Figure 14. Switching Time Waveform

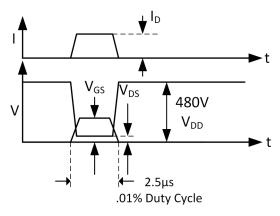
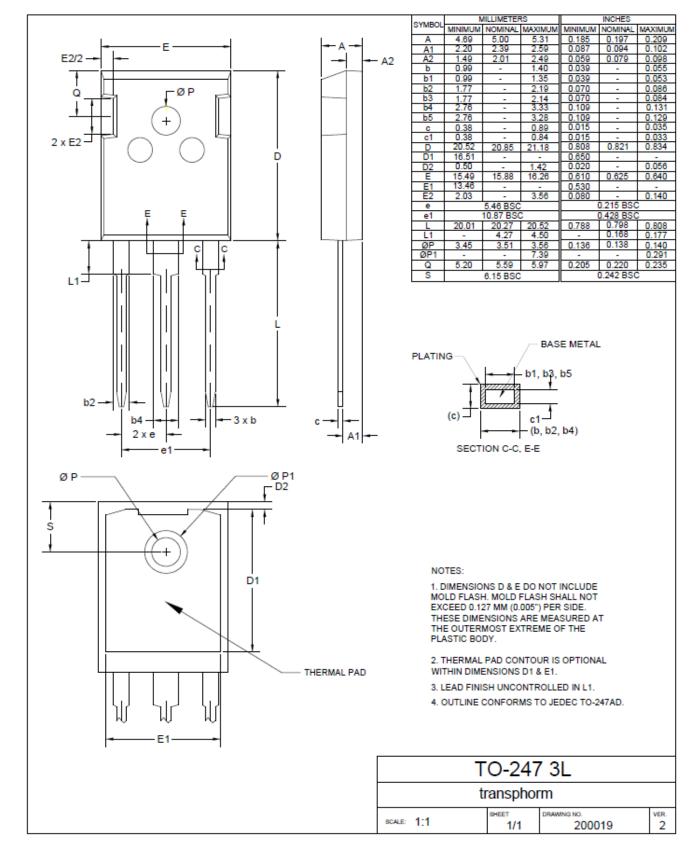



Figure 18. Dynamic R_{DS(on)} Waveform

Mechanical

3 Lead TO-247 Package

Design Considerations

The fast switching of GaN devices reduces current-voltage cross-over losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	

Application Notes

- AN0002: Characteristics of Transphorm GaN Power Switches
- AN0003: Printed Circuit Board Layout and Probing
- AN0004: Designing Hard-switched Bridges with GaN
- AN0008: Drain Voltage and Avalanche Ratings for GaN FETs
- AN0009: Recommended External Circuitry for GaN FETs

Evaluation Boards

- TDTTP4000W066-KIT: 4kW totem-pole PFC evaluation platform
- TDINV4500W050-KIT: 4.5kW inverter evaluation platform

Revision History

Version	Date	Change(s)
9	11/14/2016	Added application note AN0009
10	12/12/2016	Formatting Changes to p. 3, revision of dynamic measurement verbiage