

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

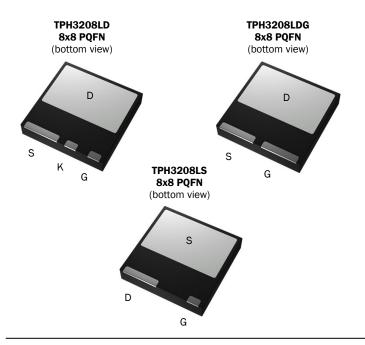
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

650V Cascode GaN FET PQFN88 Series

Description

The TPH3208L Series 650V, $110m\Omega$ gallium nitride (GaN) FETs are normally-off devices. Transphorm GaN FETs offer better efficiency through lower gate charge, faster switching speeds, and smaller reverse recovery charge, delivering significant advantages over traditional silicon (Si) devices.

Transphorm is a leading-edge wide band gap supplier with world-class innovation and a portfolio of fully-qualified GaN transistors that enables increased performance and reduced overall system size and cost.


Related Literature

- ANOOO9: Recommended External Circuitry for GaN FETs
- ANOOO3: Printed Circuit Board Layout and Probing

Product Series and Ordering Information

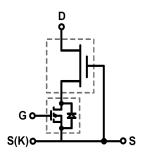
Part Number*	Package	Package Configuration
TPH3208LD	8 x 8mm PQFN	Common Drain
TPH3208LDG**	8 x 8mm PQFN	Common Drain
TPH3208LS	8 x 8mm PQFN	Common Source

- * Add "-TR" suffix for tape and reel
- ** LDG package offers larger gate pad

Features

- Easy to drive—compatible with standard gate drivers
- Low conduction and switching losses
- Low Qrr of 54nC—no free-wheeling diode required
- JEDEC-qualified GaN technology
- · RoHS compliant and Halogen-free

Benefits


- · Increased efficiency through fast switching
- · Increased power density
- Reduced system size and weight
- Enables more efficient topologies—easy to implement bridgeless totem-pole designs
- Lower BOM cost

Applications

- Renewable energy
- Industrial
- Automotive
- · Telecom and datacom
- · Servo motors

Key Specifications		
V _{DS} (V) min	650	
V _{TDS} (V) max	800	
$R_{DS(on)}(m\Omega)$ max*	130	
Q _{rr} (nC) typ	54	
Qg (nC) typ	10	

^{*} Includes dynamic R_(on)

Cascode Device Structure

Absolute Maximum Ratings (T_C =25 $^{\circ}$ C unless otherwise stated)

Symbol	Parame	eter	Limit Value	Unit
I _{D25°C}	Continuous drain current @Tc	=25°C a	20	А
I _{D100°C}	Continuous drain current @Tc	=100°C a	13	A
I _{DM}	Pulsed drain current (pulse w	Pulsed drain current (pulse width: 10µs)		A
V _{DSS}	Drain to source voltage		650	V
V _{TDS}	Transient drain to source voltage b		800	V
V _{GSS}	Gate to source voltage		±18	V
P _{D25°C}	Maximum power dissipation		96	W
Tc	Operating temperature	Case	-55 to +150	°C
TJ	Operating temperature	Junction	-55 to +150	°C
Ts	Storage temperature		-55 to +150	°C
T _{CSOLD}	Soldering peak temperature °		260	°C

Thermal Resistance

Symbol	Parameter	Typical	Unit
R _{OJC}	Junction-to-case	1.3	°C/W
R _{OJA}	Junction-to-ambient ^d	45	°C/W

Notes:

For high current operation, see application note AN0009 In off-state, spike duty cycle D<0.01, spike duration <1µs b.

For 10 sec., 1.6mm from the case

Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper area and 70µm thickness)

Electrical Characteristics (T_C=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Static			•	•	•		
V _{DSS-MAX}	Maximum drain-source voltage	650	_	_	V	V _{GS} =0V	
V _{GS(th)}	Gate threshold voltage	1.6	2.1	2.6	V	V _{DS} =V _{GS} , I _D =0.3mA	
	Drain-source on-resistance (T _J =25 °C)	_	110	130		V _{GS} =8V, I _D =14A, T _J =25 °C	
$R_{DS(on)}$	Drain-source on-resistance (T _J =150 °C)	_	226	_	mΩ	V _{GS} =8V, I _D =14A, T _J =150°C	
I	Drain-to-source leakage current (T _J =25°C)	_	3	30		V _{DS} =650V, V _{GS} =0V, T _J =25°C	
I _{DSS}	Drain-to-source leakage current (T _J =150°C)	_	7	_	μΑ	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
I _{GSS}	Drain-to-source forward leakage current	_	_	100	nA	V _{GS} =18V	
IGSS	Drain-to-source reverse leakage current	_	_	-100	IIA	V _{GS} =-18V	
Dynamic							
Ciss	Input capacitance	_	760	_			
Coss	Output capacitance	_	58	_	pF	V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
C _{RSS}	Reverse transfer capacitance	_	6	_			
C _{O(er)}	Output capacitance, energy related ^a	_	82	_		V _{GS} =0V, V _{DS} =0V to 400V	
C _{O(tr)}	Output capacitance, time related b	_	132	_	pF		
Qg	Total gate charge	_	10	42		V_{DS} =400V, V_{GS} =0V to 8V, I_D =13A	
Qgs	Gate-source charge	_	3.1	_	nC		
Q _{gd}	Gate-drain charge	_	3.4	_			
t _{d(on)}	Turn-on delay	_	17	_		V_{DS} =400V, V_{GS} =0V to 10V, I_{D} =13A, FB =120 Ω	
t _r	Rise time	_	7	_			
T _{d(off)}	Turn-off delay	_	23	_	ns		
t _f	Fall time	_	8	_			
Reverse	Operation		ı	ı	ı		
Is	Reverse current	_	_	13	А	V _{GS} =0V, T _C =100°C	
		_	1.93	_	V	V _{GS} =0V, I _S =14A, T _J =25°C	
V _{SD}	Reverse voltage	_	1.33	_		V _{GS} =0V, I _S =7A, T _J =25°C	
t _{rr}	Reverse recovery time	_	22	_	ns	I _S =0A to 13A, V _{DD} =400V,	
Qrr	Reverse recovery charge	_	54	_	nC	di/dt=1000A/µs, T _J =25°C	

Notes:

Equivalent capacitance to give same stored energy from 0V to 400V Equivalent capacitance to give same charging time from 0V to 400V

Typical Characteristics (25 °C unless otherwise stated)

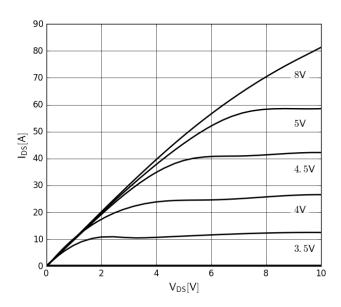


Figure 1. Typical Output Characteristics T_J=25 °C

Parameter: V_{GS}

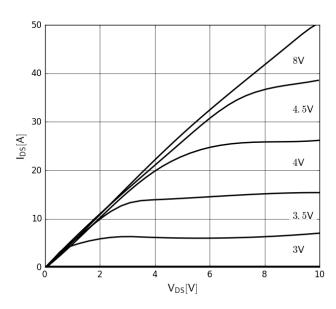


Figure 2. Typical Output Characteristics T_J =150 ° C

Parameter: V_{GS}

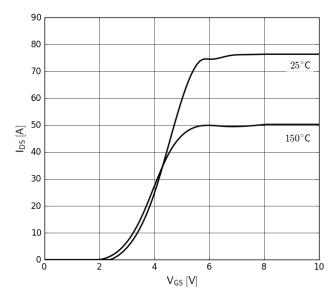


Figure 3. Typical Transfer Characteristics V_{DS} =10V, parameter: T_J

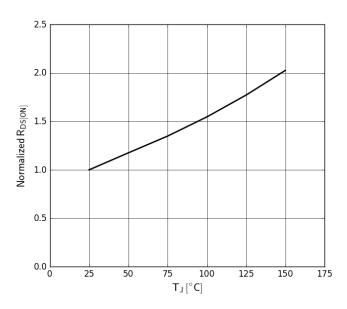


Figure 4. Normalized On-Resistance $I_D=13A,\ V_{GS}=8V$

Typical Characteristics (25 °C unless otherwise stated)

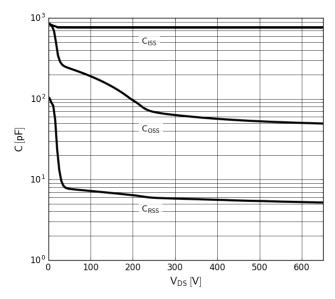


Figure 5. Typical Capacitance $V_{\text{GS}}{=}0V,\,f{=}1MHz$

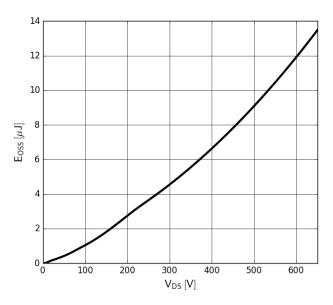


Figure 6. Typical Coss Stored Energy

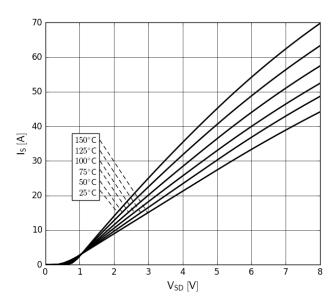


Figure 7. Forward Characteristics of Rev. Diode $I_S {=} f(V_{SD}), \ parameter {:}\ T_J$

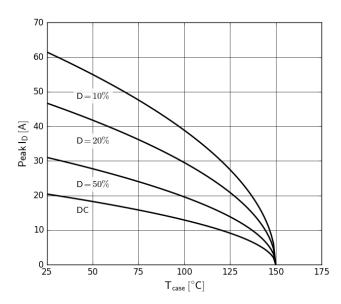


Figure 8. Current Derating
Pulse width $\leq 10 \mu s$

Typical Characteristics (25 °C unless otherwise stated)

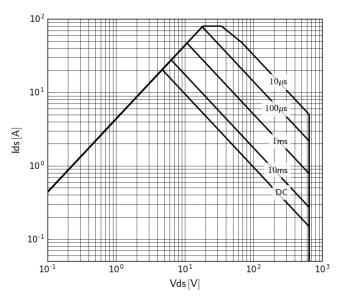


Figure 9. Safe Operating Area T_C=25°C

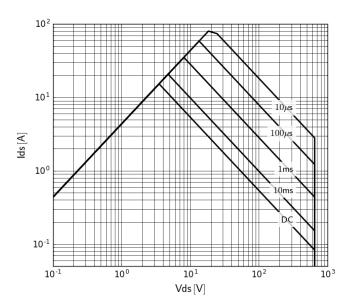


Figure 10. Safe Operating Area T_C=80°C

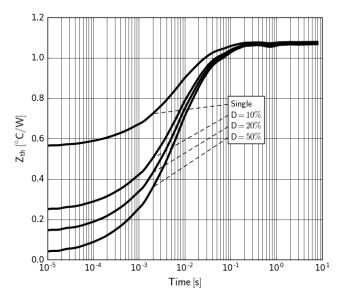


Figure 11. Transient Thermal Resistance

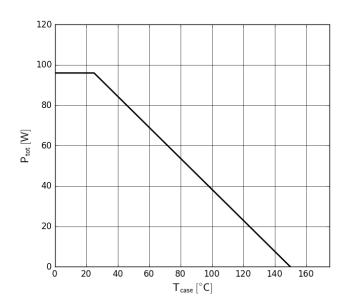


Figure 12. Power Dissipation

Test Circuits and Waveforms

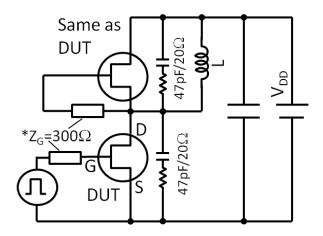


Figure 13. Switching Time Test Circuit *ferrite bead 300 Ω at 100MHz (See app note AN0009 for methods to ensure clean switching)

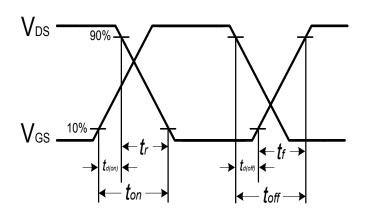


Figure 14. Switching Time Waveform

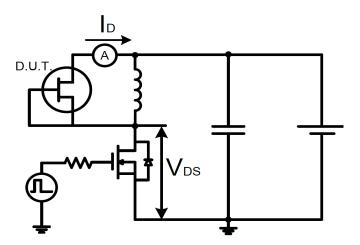


Figure 15. Test Circuit for Reverse Diode Characteristics

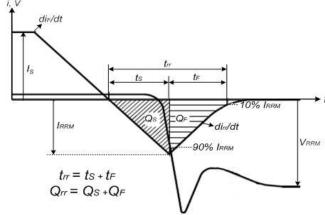
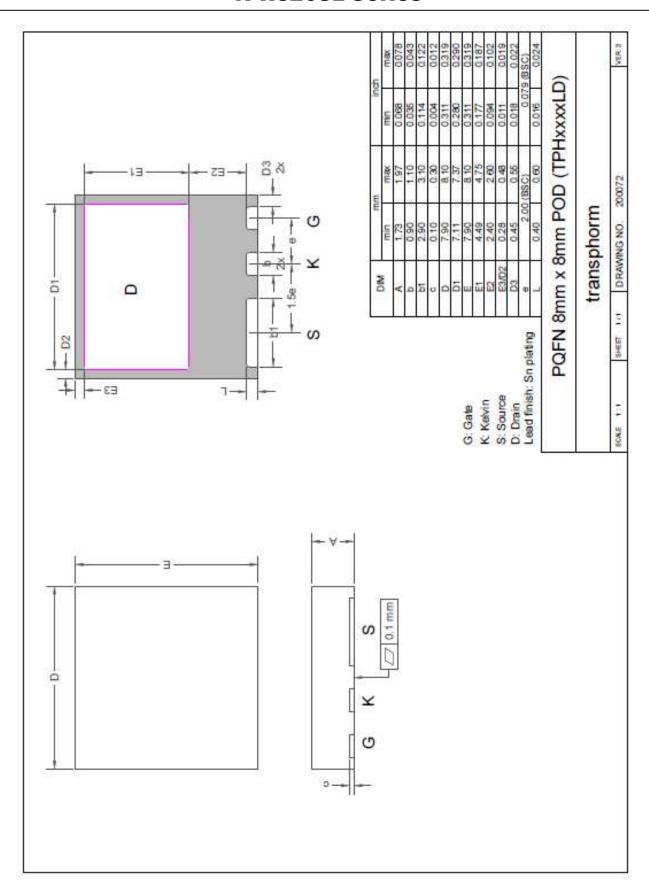
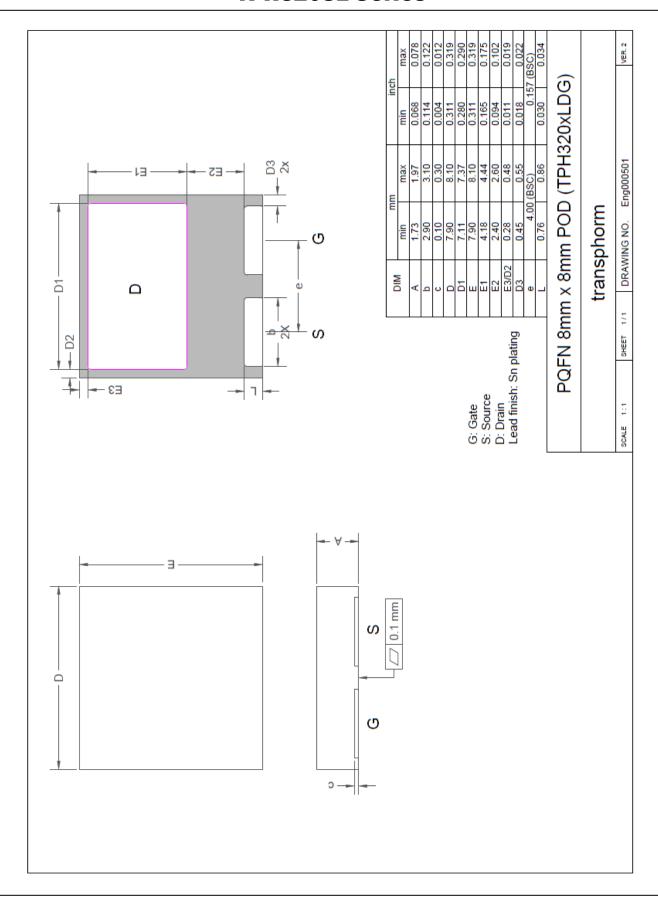
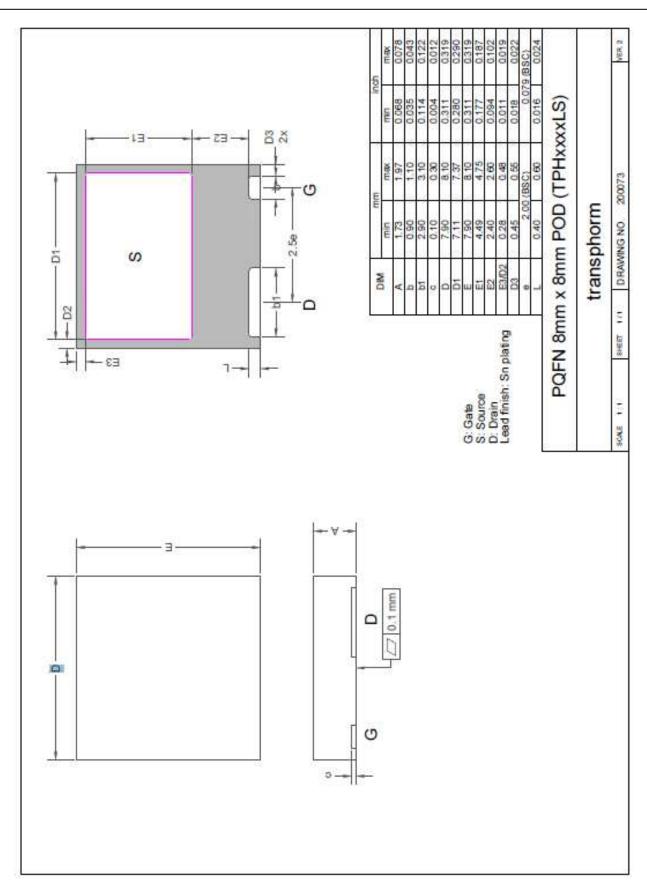





Figure 16. Diode Recovery Waveform

Design Considerations

The fast switching of GaN devices reduces current-voltage cross-over losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	

Application Notes

- ANOOO2: Characteristics of Transphorm GaN Power Switches
- ANOOO3: Printed Circuit Board Layout and Probing
- ANOOO4: Designing Hard-switched Bridges with GaN
- ANOOO8: Drain Voltage and Avalanche Ratings for GaN FETs
- ANOOO9: Recommended External Circuitry for GaN FETs

Evaluation Boards

• TDHBG2500P100-KIT: 2.5KW hard-switched half-bridge, buck or boost evaluation platform

Revision History

Version	Date	Change(s)
0	11/14/2016	Release L series datasheet