mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

- Rsense: 50mΩ ± 1%
- Fully Assembled and Tested
- > 2in x 2in 2-layer circuit board

COMPONENT LIST

DESIGNATION	QTY	DESCRIPTION
C1	1	0.1µF ±10%
		capacitor (0805)
C2	1	47nF ±10%
		capacitor (0805)
R1	1	50mΩ ± 1% (0805)
U1	1	TS1100-25DB/
		TS1100-50DB/
		TS1100-100DB/
		TS1100-200DB
VBATT, VOUT,	3	Test points
LOAD		

DESCRIPTION

The demo board for the TS1100 is a completely assembled and tested circuit board that can be used for evaluating the current-sense amplifier for all (4) gain options; i.e., 25V/V, 50V/V, 100V/V, and 200V/V.

The board is configured with an R_{SENSE} =R1=50m Ω resistor. The board has a dedicated RS+=VBATT, RS-=LOAD, and output voltage OUT=VOUT test points. For additional information, refer to the TS1100 product datasheet.

All TS1100s are available in a PCB-space saving 5lead SOT23 surface-mount package.

Product data sheets and additional documentation can be found at <u>www.silabs.com</u>.

ORDERING INFORMATION

Order Number	Description
TS1100-25DB	
TS1100-50DB	TS1100-XXX
TS1100-100DB	Demo Board
TS1100-200DB	

SILICON LABS

The demo board includes an on-board 0.1μ F decoupling capacitor at the V_{BATT} input pin and a 47nF capacitor at the V_{OUT} output pin. Depending on the load current desired, an external resistor or active load is to be connected to the LOAD pin.

QUICK START PROCEDURE

Required Equipment

- > TS1100 demo board
- A DC Power Supply, an HP Model HP6624A or equivalent
- Two digital voltmeters
- Load resistor or an active load (value varies depending on ILOAD desired)

Signal	Eval board		
RS+	VBATT		
RS-	LOAD		
OUT	VOUT		
GND	GND		

Table 1. Demo board test points

GAIN (V/V)	V _{BATT} (V)	I _{LOAD} (mA)	R _{LOAD} (Ω)	V _{OUT} (V)	MAX V _{SENSE} (mV)
25	6	1600	3.75	2	80
50	6	800	7.5	2	40
100	6	400	15	2	20
200	6	200	30	2	10

Table 2. Demo board test set-up per gain setting

To evaluate the TS1100 current-sense amplifier circuit, the following steps are to be performed:

- Before connecting the DC power supply to the demo board, turn on the power supply, set the DC voltage to 6V, set its short circuit current limit to 10% higher than the maximum load current in the application, and then turn it off.
- Connect the DC power supply positive terminal to the pad labeled V_{BATT} and its negative terminal to the adjacent pad labeled GND.
- Connect a digital voltmeter to the test points labeled TP+ and TP- to measure V_{SENSE}.
- 4) Connect the positive terminal of a second digital voltmeter to the test point labeled V_{OUT} and the

negative terminal to the adjacent test point labeled GND.

- 5) Based on the selected gain option of the current sense amplifier, select the load resistor or an active load according to Table 2. Connect one end of this resistor or active load to the pad labeled LOAD and the other end to the adjacent pad labeled GND.
- Turn on the power supply and observe the output voltage at V_{OUT}. The expression for the TS1100's output voltage is given by:

Vout = $I_{LOAD} \times 50m\Omega \times R_{OUT}/R1$

where the TS1100's internal R_{OUT} and R1 resistor values are listed in Table 3.

GAIN(V/V)	R1 (Ω)	ROUT (Ω)
25	400	10k
50	200	10k
100	100	10k
200	100	20k

- Table 3. TS1100's Internal Gain Setting Resistors (typical values)
- The TS1100's actual output voltage V_{OUT} will depend on the TS1100's actual offset voltage V_{OS}, its gain error GE, sense resistor (R_{SENSE}) tolerance of ±1%, and the load resistor tolerance/active load accuracy.

Figure 2. Top Layer Component View

Figure 3. Top Layer Component View #2

Figure 4. Bottom Layer (GND)

Figure 5. Bottom Layer (GND) #2