

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

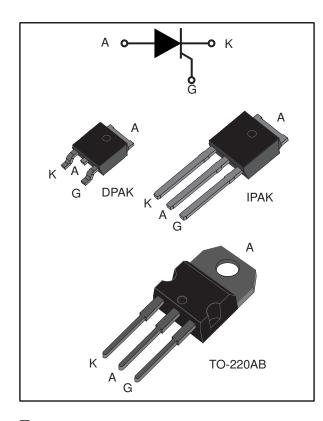
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Sensitive 12 A SCRs

Datasheet - production data

Features

- On-state RMS current, I_{T(RMS)} 12 A
- Repetitive peak off-state voltage, V_{DRM}/V_{RRM} 600 V
- Triggering gate current, I_{GT} 200 μA
- ECOPACK®2 compliant component

Applications

- Capacitive ignition circuit for motorcycle engine
- DC brush motor drive for power tool or kitchen appliance
- Gas ignitor circuit
- Regulator driver for battery charger

Description

Thanks to highly sensitive triggering levels, the 12 A SCR series is suitable to fit all modes of control, found in applications such as overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition and voltage regulation circuits.

Available in through-hole or surface-mount packages, they provide an optimized performance in a limited space.

Table 1: Device summary

Order code	V _{DRM} /V _{RRM}	Igт	Package	
TS1220-600B		0.2 mA	DPAK	
TS1220-600B-TR	C00 V	0.2 mA	DPAK	
TS1220-600H	600 V	0.2 mA	IPAK	
TS1220-600T		0.2 mA	TO-220AB	

Characteristics TS1220

1 Characteristics

Table 2: Absolute ratings (limiting values)

Symbol	Parameter	Value	Unit		
I _{T(RMS)}	On-state RMS current (180° conduction angle)		T _c = 105 °C	12	Α
I _{T(AV)}	Average on-state current (180° conduction angle)		T _c = 105 °C	8	Α
	Non repetitive surge peak	$t_p = 8.3 \text{ ms}$	T 05.00	115	
ITSM	on-state current		T _j = 25 °C	110	Α
l ² t	I^2 t value for fusing $t_p = 10 \text{ ms}$		T _j = 25 °C	60	A ² s
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $I_T \le 100 \text{ ns}$		T _j = 125 °C	50	A/μs
I _{GM}	Peak gate current $t_p = 20 \mu s$ $T_j = 1$		T _j = 125 °C	4	Α
P _{G(AV)}	Average gate power dissipation $T_j = 125 ^{\circ}\text{C}$			1	W
T _{stg}	Storage junction temperature range	- 40 to + 150	• °C		
Tj	Operating junction temperature range	- 40 to + 125			

Table 3: Sensitive electrical characteristics (Tj = 25 °C, unless otherwise specified)

Symbol	Test conditions						
lgт	V- 12 V D: 140 O		MAX.	200	μΑ		
V_{GT}	$V_D = 12 \text{ V}, R_L = 140 \Omega$		MAX.	0.8	V		
V_{GD}	$V_{D} = V_{DRM}, R_{L} = 3.3 \; k\Omega, R_{GK} = 220 \; \Omega$	T _j = 125 °C	MIN.	0.1	V		
V_{RG}	$I_{RG} = 10 \mu A$	I _{RG} = 10 μA MIN. 8					
Ін	$I_T = 50 \text{ mA}, R_{GK} = 1 \text{ k}\Omega$ MAX. 5				mA		
lι	$I_G = 1 \text{ mA}, R_{GK} = 1 \text{ k}\Omega$				mA		
dV/dt	$V_D = 67\% V_{DRM}$, $R_{GK} = 220 \Omega$	$V_D = 67\% \ V_{DRM}, \ R_{GK} = 220 \ \Omega$ $T_j = 125 \ ^{\circ}C$			V/µs		
V_{TM}	$I_{TM} = 24 \text{ A } t_p = 380 \mu\text{s}$	$I_{TM} = 24 \text{ A t}_p = 380 \mu \text{s}$ $T_j = 25 ^{\circ}\text{C}$		1.6	V		
V_{t0}	Threshold voltage $T_j = 125 ^{\circ}\text{C}$		MAX.	0.85	V		
R_d	Dynamic resistance $T_j = 125 ^{\circ}\text{C}$		MAX.	30	mΩ		
I _{DRM}	V V P 1 kO	T _j = 25 °C	MAX.	5	μΑ		
I _{RRM}	$V_{DRM} = V_{RRM}, R_{GK} = 1 k\Omega$	T _j = 125 °C	IVIAX.	2	mA		

Table 4: Thermal resistance

Symbol	Parameter			Value	Unit
R _{th(j-c)}	Junction to case (DC)		DPAK, IPAK, TO-220AB	1.3	°C/W
		$S = 0.5 \text{ cm}^{2(1)}$	DPAK	70	
$R_{th(j-a)}$	Junction to ambient (DC)		IPAK	100	°C/W
			TO-220AB	60	

Notes:

(1)S = Copper surface under tab

TS1220 Characteristics

1.1 Characteristics (curves)

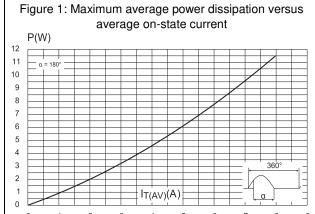


Figure 2: Average and DC on-state current versus case temperature

IT(AV)(A)

14

10

8

6

4

2

0

0

25

50

75

100

125

Figure 3: Average and DC on-state current versus ambient temperature (DPAK)

3.0 IT(AV)(A)

2.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.5 Device mounted on FR4 with recommended pad layout

1.6 Device mounted on FR4 with recommended pad layout

1.7 Device mounted on FR4 with recommended pad layout

1.6 Device mounted on FR4 with recommended pad layout

1.7 Device mounted on FR4 with recommended pad layout

1.6 Device mounted on FR4 with recommended pad layout

1.7 Device mounted on FR4 with recommended pad layout

1.8 Device mounted on FR4 with recommended pad layout

1.8 Device mounted on FR4 with recommended pad layout

1.9 Device mounted on FR4 with recommended pad layout

1.0 Device mounted on FR4 with recommended pad layout

1.0 Device mounted on FR4 with recommended pad layout

1.0 Device mounted on FR4 with recommended pad layout

1.0 Device mounted on FR4 with recommended pad layout

1.0 Device mounted on FR4 with recommended pad layout

1.0 Device mounted on FR4 with recommended pad layout

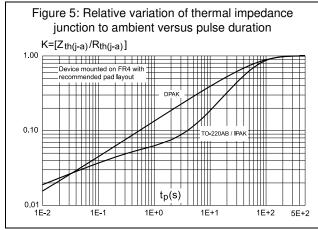
1.0 Device mounted on FR4 wit

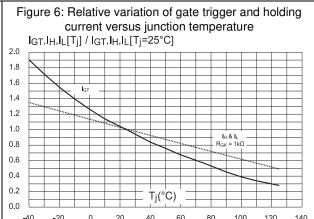
Figure 4: Relative variation of thermal impedance junction to case versus pulse duration

K=[Zth(j-c)/Rth(j-c)]

0.5

0.2


tp(s)

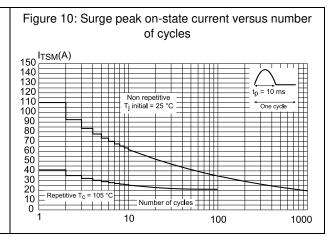

1E-3

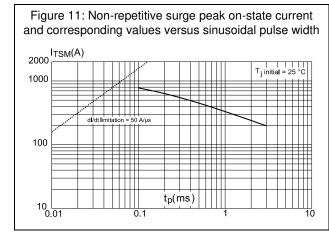
1E-2

1E-1

1E-0

Characteristics TS1220


Figure 7: Relative variation of holding current versus gate-cathode resistance (typical values) $_{5.0}$ $\frac{I_H[R_{GK}] / I_H[R_{GK} = 1]}{I_H[R_{GK}]} K\Omega$ 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 -R_{GK}(kΩ) 0.0 L 1E-2


1E+0

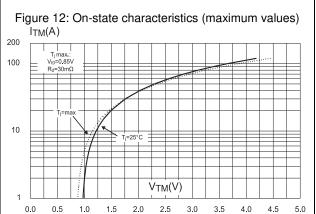
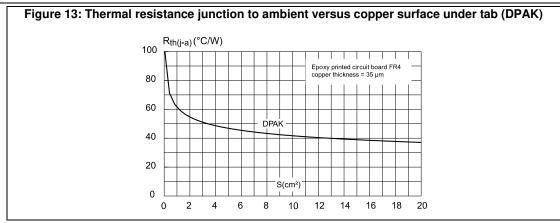

1E-1

Figure 8: Relative variation of dV/dt immunity versus gate-cathode resistance (typical values) 10 dV/dt[R_{GK}] / dV/dt[R_{GK} = 220 Ω] T_j = 125 °C V_D = 67% V_{DRM} RGK (Ω) 200 400 600 800 1000 1200


Figure 9: Relative variation of dV/dt immunity current versus gate-cathode capacitance (typical values) $4.0 \frac{\text{dV/dt}[C_{GK}] / \text{dV/dt}[R_{GK} = 220 \Omega]}{\text{dV/dt}[R_{GK} = 220 \Omega]}$ T_j = 125 °C V_D = 67% V_{DRM} R_{GK} = 220 Ω 3.5 3.0 2.5 20 1.5 1.0 0.5 CGK (nF) 0.0 25 50 100 125 150

TS1220 Characteristics

Package information TS1220

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

Lead free lead plating; halogen free molding compound.

2.1 DPAK package mechanical data

Figure 14: DPAK package outline Ε c2 2 5 ェ E1 Α1

TS1220 Package information

Table 5: DPAK mechanical data

Dim	mm		Inches ⁽¹⁾			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.18		2.40	0.0858		0.0945
A1	0.90		1.10	0.0354		0.0433
A2	0.03		0.23	0.0012		0.0091
b	0.64		0.90	0.0252		0.0354
b4	4.95		5.46	0.1949		0.2150
С	0.46		0.61	0.0181		0.0240
c2	0.46		0.60	0.0181		0.0240
D	5.97		6.22	0.2350		0.2449
D1	4.95		5.60	0.1949		0.2205
Е	6.35		6.73	0.2500		0.2650
E1	4.32		5.50	0.1701		0.2165
е		2.286			0.0900	
e1	4.40		4.70	0.1732		0.1850
Н	9.35		10.40	0.3681		0.4094
L	1.00		1.78	0.0394		0.0701
L2			1.27			0.0500
L4	0.60		1.02	0.0236		0.0402
V2	-8°		8°	-8°		8°

Notes:

 $^{^{(1)}}$ Inch dimensions are for reference only.

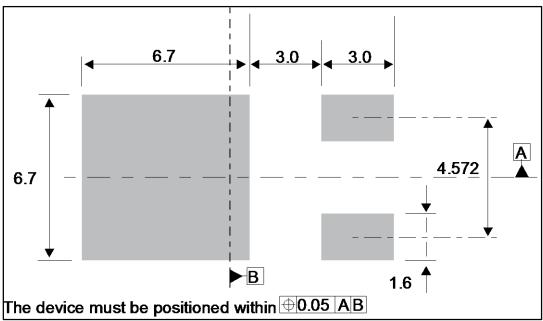
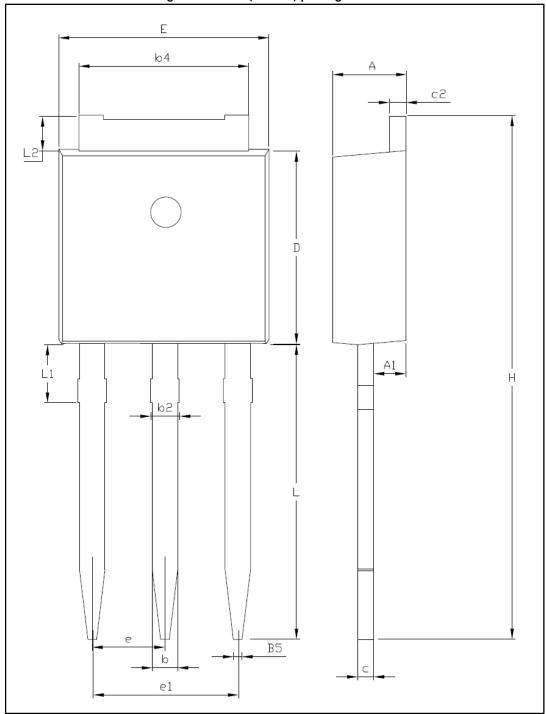



Figure 15: DPAK recommended footprint (dimensions are in mm)

Package information TS1220

2.2 IPAK package information

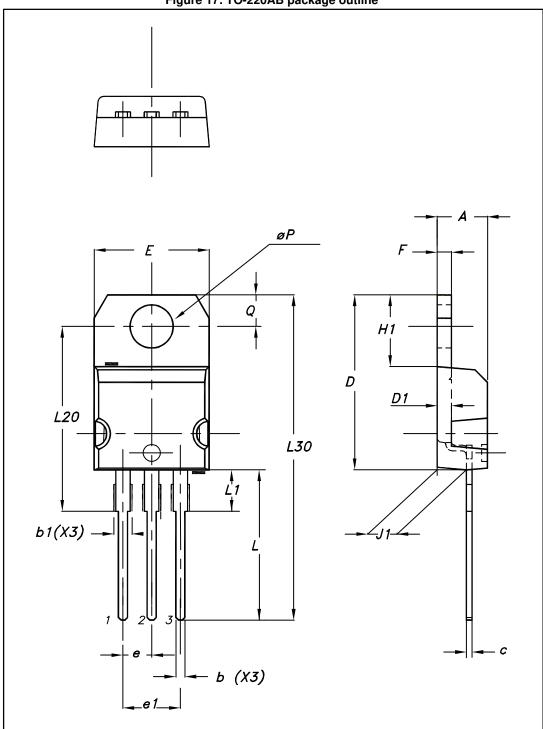
Figure 16: IPAK (TO-251) package outline

This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

TS1220 Package information

Table 6: IPAK (TO-251) package mechanical data

	Dimensions					
Ref.		Millimiters			Inches ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.20		2.40	0.0866		0.0945
A1	0.90		1.10	0.0354		0.0433
b	0.64		0.90	0.0252		0.0354
b2			0.95			0.0374
b4	5.20		5.43	0.2047		0.2138
B5		0.30			0.0125	
С	0.45		0.60	0.0177		0.0236
c2	0.46		0.60	0.0181		0.0236
D	6.00		6.20	0.2362		0.2441
Е	6.40		6.65	0.2520		0.2618
е		2.28			0.0898	
e1	4.40		4.60	0.1732		0.1811
Н		16.10			0.6339	
L	9.00		9.60	0.3545		0.3780
L1	0.80		1.20	0.0315		0.0472
L2		0.80	1.25		0.0315	0.0492
V1		10°			10°	


Notes:

 $^{^{(1)}}$ Inch dimensions are for reference only.

Package information TS1220

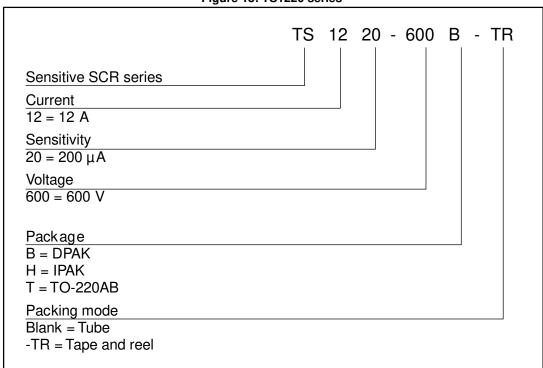
2.3 TO-220AB package information

Figure 17: TO-220AB package outline

TS1220 Package information

Table 7: TO-220AB package mechanical data

	Dimensions				
Ref.	Millin	neters	Inch	es ⁽¹⁾	
	Min.	Max.	Min.	Max.	
Α	4.40	4.60	0.1732	0.1811	
b	0.61	0.88	0.0240	0.0346	
b1	1.14	1.70	0.0449	0.0669	
С	0.48	0.70	0.0189	0.0276	
D	15.25	15.75	0.6004	0.6201	
D1	1.2	7 typ.	0.0500 typ.		
E	10.00	10.40	0.3937	0.4094	
е	2.40	2.70	0.0945	0.1063	
e1	4.95	5.15	0.1949	0.2028	
F	1.23	1.32	0.0484	0.0520	
H1	6.20	6.60	0.2441	0.2598	
J1	2.40	2.72	0.0945	0.1071	
L	13.00	14.00	0.5118	0.5512	
L1	3.50	3.93	0.1378	0.1547	
L20	16.40 typ.		0.6457 typ.		
L30	28.90 typ.		1.1378 typ.		
ØP	3.75	3.85	0.1476	0.1516	
Q	2.65	2.95	0.1043	0.1161	


Notes:

 $[\]ensuremath{^{(1)}}\xspace$ Inch dimensions are for reference only.

Ordering information TS1220

3 Ordering information

Figure 18: TS1220 series

Table 8: Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
TS1220-600B	TS12 20600	DPAK	0.3 g	75	Tube
TS1220-600B-TR	TS12 20600	DPAK	0.3 g	2500	Tape and reel
TS1220-600H	TS12 20600	IPAK	0.3 g	75	Tube
TS1220-600T	TS1220600T	TO-220AB	2.3 g	50	Tube

TS1220 Revision history

4 Revision history

Table 9: Document revision history

Date	Revision	Changes	
08-Apr-2015	1	First issue.	
03-Aug-2016	2	Added section Applications and updated Features and in <i>Table 1:</i> "Device summary" in cover page. Updated Section 3: "Package information". Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved