imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TS14002 nanoSmart® Ultra-Low-Power **Linear Regulator**

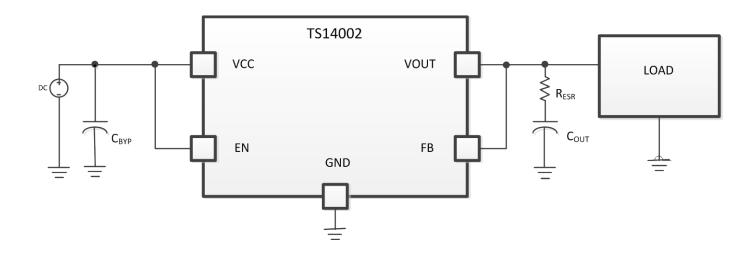
TRIUNE PRODUCTS

Features

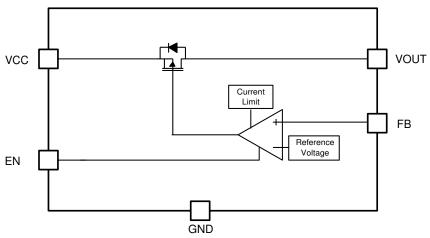
- Ultra-low nA operating current at light load
- Best-in-class guiescent current of 20nA at Iload=0 .
- Best-in-class quiescent current of 100pA in disable mode
- Output voltage options of 1.2V 4.2V in 100mV steps (programmed at manufacturing)
- Accurate output regulation
- Over-current protection

Summary Specifications Low input operating voltage of 2.5V to 5.5V

- Packaged in a 8pin DFN (2x2) .
- Product is lead-free, Halogen Free, RoHS / WEEE • compliant


Description

The TS14002 linear regulator is an ultra-low-power circuit which draws low nA level quiescent current at light load, but has the capability to regulate current loads as high as 150mA.


Applications

- Portable electronics
- RFID
- Industrial
- Medical
- Energy harvesting systems
- SmartCard

Typical Applications

Block Diagram

Pin Description

Pin #	Pin Name	Pin Type ⁽¹⁾	Description
1	GND	Р	Ground
2	V _{OUT}	0	Regulated Output Voltage
3	NC		No Connect (connect to GND or float)
4	NC		No Connect (connect to GND or float)
5	NC		No Connect (connect to GND or float)
6	FB	I	Feedback Input
7	V _{cc}	Р	Input Power
8	EN	I	Enable Input

(1) I = Input, O = Output, P = Power

Absolute Maximum Rating

Over operating free-air temperature range unless otherwise noted^(2, 3, 4)

Parameter	Value	Unit
V _{cc} , V _{out} , EN, FB	-0.3 to 6.0	V
Electrostatic Discharge (Human Body Model)	2	kV
Operating Junction Temperature Range, T	-40 to 85	°C
Storage Temperature Range, T _{stg}	-65 to 150	٥°
Reflow Temperature (soldering, 10 seconds)	260	°C

(2) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(3) All voltage values are with respect to network ground terminal.

(4) ESD testing is performed according to the respective JESD22 JEDEC standard.

Thermal Characteristics

Package DFN	θJA (°C/W) (See Note 5)	θJC (°C/W) (See Note 6)	
8 pin	73.1	10.7	

(5) This assumes a FR4 board only.

(6) This assumes a 1 Oz. Copper JEDEC standard board with thermal vias – See Exposed Pad section and application note for more information.

Recommended Operating Conditions

Parameter		Тур	Мах	Unit
Unregulated Supply Input Voltage (V_{cc})	2.5		5.5	V
Enable Input (EN)	0		5	V
Regulated Supply Output Voltage (V_{OUT}) typical	1.2		4.2	V
Operating Ambient Temperature, TA (Note 7)			55	°C
Operating Junction Temperature, T_{J}	-40		85	°C
Input Bypass Capacitor (C _{BYP})		2.2		uF
Output Bypass Capacitor (C _{OUT})	1	2.2	4.7	uF

(7) T_A Max shown here is a guideline. Higher T_A can be tolerated if T_A does not exceed the Absolute Maximum Rating.

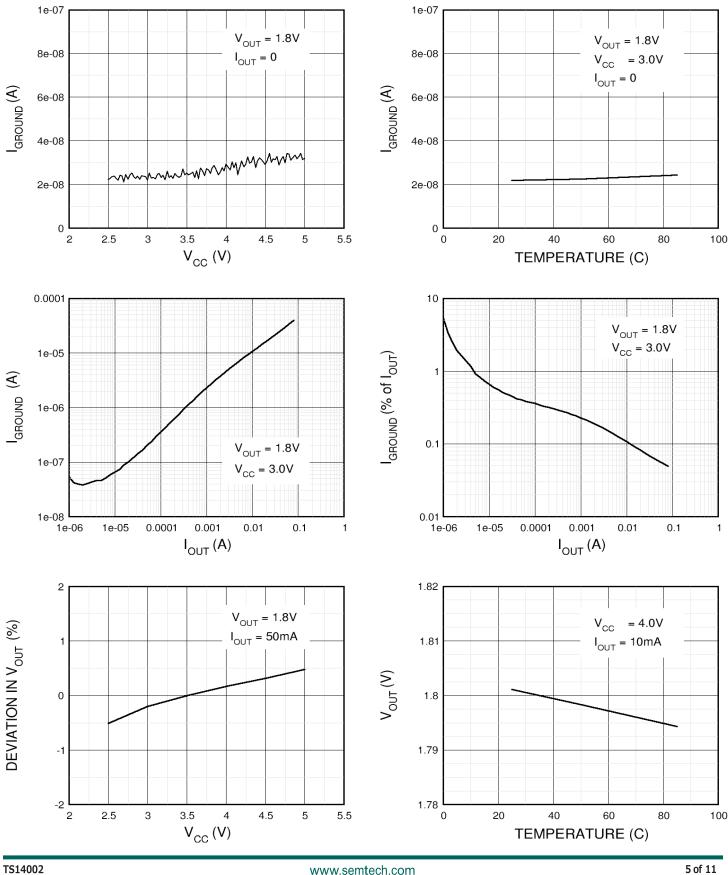
Characteristics

Electrical characteristics, $V_{cc} = 2.5V$ to 5.5V, $T_{J} = 25C$, $C_{OUT} = 2.2uF$ unless otherwise noted

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{cc}	Input Supply Voltage		2.5		5.5	V
Vil _{en}	Input Low Logic Level				0.3*VCC	V
Vih _{en}	Input High Logic Level		0.7*VCC			V
l _{qq}	Quiescent Current (note 9)	$V_{\rm CC} = 2.5V$ to 5.5V, $I_{\rm OUT} = 0$ (Note 9)		20		nA
I qq-disable	Quiescent Current: Disable Mode	I _{OUT} = 0, EN = 0		100		pА
I op-gnd	Operating Current	$V_{cc} = V_{cc_MIN}, I_{OUT} = 150 \text{mA}$ (Note 8)		200		uA
	Lood Conchility	Vout _{nominal} from 1.2V to 3.5V	0		150	m (
lout	Load Capability	Vout _{nominal} >3.5V	0		100	mA

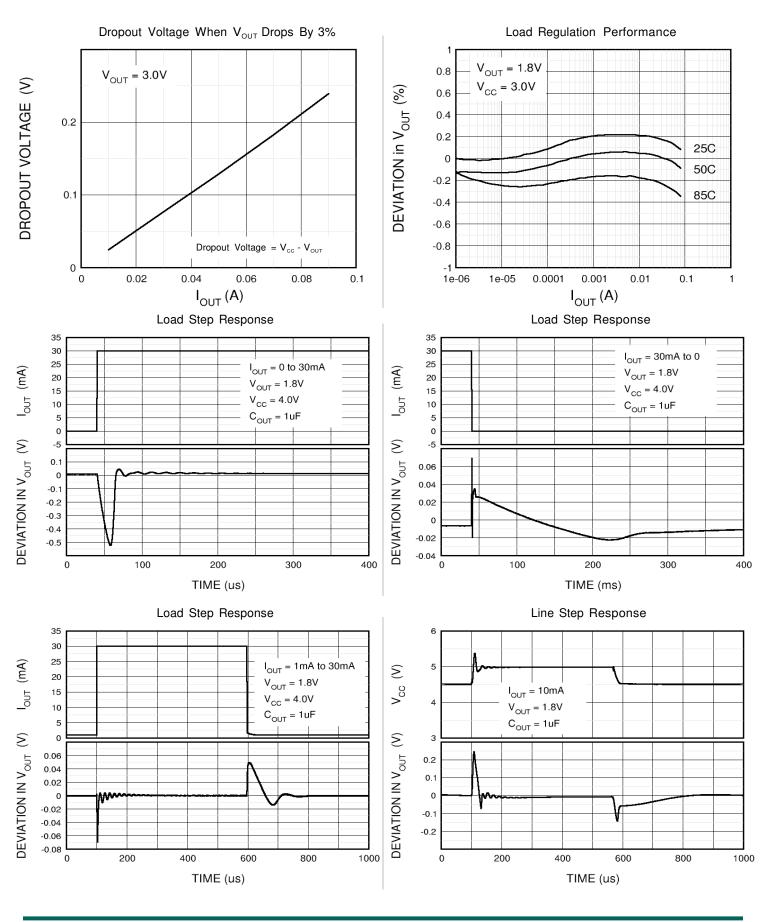
(8) If $Vout_{nominal} < 2.5V$, then $V_{cc_{MIN}} = 2.5V$, otherwise $V_{cc_{MIN}} = Vout + 0.3V$. $V_{cc_{MAX}}$ is always 5.5V. $V_{cc_{NOM}}$ is the average of $V_{cc_{MAX}}$ and $V_{cc_{MIN}}$.

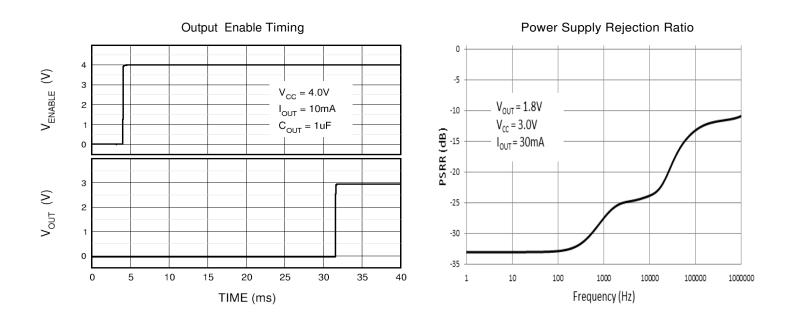
(9) Not tested in production, but has been evaluated on samples

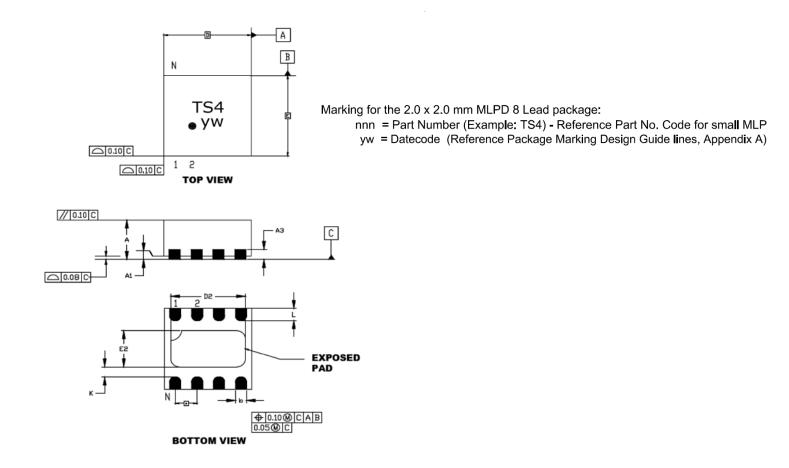

Characteristics Continued

Electrical characteristics, $V_{cc} = 2.5V$ to 5.5V, $T_{J} = 25C$, unless otherwise noted

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
N	DC Line Regulation	$V_{cc} = V_{cc_{MIN}} \text{ to } V_{cc_{MAX}}, V_{out} = 1.8V \text{ to } 4.2V, I_{out} = 50\text{mA}$		0.5	4	%
V _{Line}	DC Line Regulation	$V_{cc} = V_{cc_MIN} \text{ to } V_{cc_MAX'}$ $V_{out} < 1.8V,$ $I_{out} = 50 \text{ mA}$			4	%
V _{Load}	DC Load Regulation	$V_{cc} = V_{cc_{NOM}},$ $I_{out} = 0.02mA \text{ to } 150mA,$		1	3	%
_{limit}	Short circuit current limit	V _{OUT} forced to GND (Note 9)	185	200		mA


(9) Not tested in production, but has been evaluated on samples

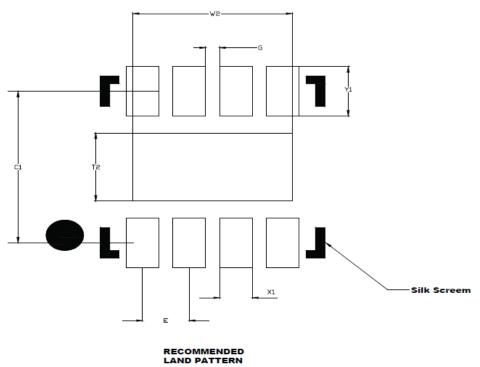

Typical Characteristics


Rev 1.5

www.semtech.com

Package Mechanical Drawings (all dimensions in mm)

	Units		MILLIMETERS	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	8		
Pitch	e	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	2.00 BSC		
Exposed Pad Width	E2	0.75	0.90	1.00
Overall Width	E	2.00 BSC		
Exposed Pad Length	D2	1.55	1.70	1.80
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.20	0.30	0.40
Contact-to-Exposed Pad	K	0.20	-	-


Notes:

Dimensions and tolerances per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact values shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information only.

Recommeded PCB Land Pattern

DIMENSIONS IN MILLIMETERS

	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	W2	-	-	1.70
Optional Center Pad Length	T2	-	-	0.90
Contact Pad Spacing	C1	-	2.00	-
Contact Pad Spacing	C2	-	-	-
Contact Pad Width (X8)	X1	-	-	0.35
Contact Pad Length (X8)	Y1	-	-	0.65
Distance Between Pads	G	0.15	-	-

Ordering Information

TS14002--CvvvDFNR

Part Number	Description
VVV	Output Voltage*
012	1.2 V
015	1.5 V
018	1.8 V
020	2.0 V
023	2.3 V
025	2.5 V
028	2.8 V
030	3.0 V
033	3.3 V
042	4.2 V

 \ast Custom values also available (1.2V - 4.2V typical in 100mV increments)

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2016

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com