

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Phase-Cut Dimmable Flyback or Buck-Boost Current Control with Active PFC for LED lighting

DESCRIPTION

The TS19320CS is a phase-cut (TRIAC) dimmable constant current control IC with active power factor correction isolated or non-isolated AC-DC LED lighting control. The TS19320CS is configurable as an isolated, primary-side-regulated Flyback controller or non-isolated Buck-Boost converter. It is compatible with many types of TRIAC dimmers including leading-edge and trailing-edge. The IC achieves a high power factor and low total harmonic distortion (THD) and guarantees constant current accuracy to <±5% using Boundary Conduction Mode (BCM) operation. The TS19320CS has built-in protection circuits such as gate voltage clamping, over temperature protection by current degeneration, $V_{\rm CC}$ overvoltage protection and system output open/short circuit protection.

FEATURES

- Constant current accuracy <±5%
- Flyback or Buck-Boost w/o photocoupler
- Good dimmer compatibility for 120/230V_{AC} Lamps
- Boundary-mode PFC operation
- Built-in active power factor correction
- High voltage (500V) startup circuit
- Open-LED demagnetization (DMG) protection
- V_{CC} over-voltage protection (OVP)
- Over-temperature protection (OTP)
- Shorted-LED Protection
- Cycle-by-cycle current limit
- Gate drive voltage clamping
- Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC.
- Halogen-free according to IEC 61249-2-21

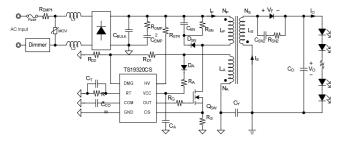
APPLICATION

- LED lighting
- Down lights, Tube lamps, PAR Lamps, Bulbs

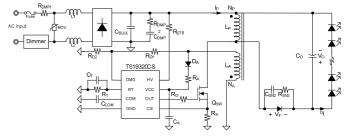
SOP-8

Pin Definition:

1


1. HV
 2. RT
 3. GND
 7. OUT

3. CS 6. V_{CC}


4. COM 5. DMG

Notes: MSL 3 (Moisture Sensitivity Level) per J-STD-020

TYPICAL APPLICATION CIRCUIT

Flyback Converter

Buck-Boost Converter

Taiwan Semiconductor

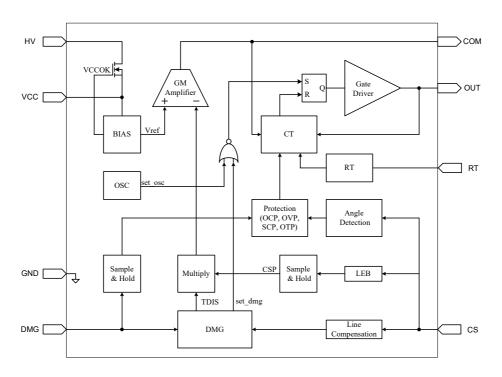
ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified) (Note 1)				
PARAMETER	SYMBOL	LIMIT	UNIT	
HV Pin Voltage to GND	V_{HV}	600	V	
Power Supply Pin	V _{CC}	40	V	
DMG voltage to GND	V_{DMG}	-0.3 to 40	V	
OUT voltage to GND	V _{OUT}	-0.3 to 40	V	
RT voltage to GND	V _{CS}	-0.3 to 5.5	V	
CS voltage to GND	V _{CS}	-0.3 to 5.5	V	
COM voltage to GND	V _{COM}	-0.3 to 5.5	V	
Junction Temperature Range	T _J	-40 to +150	°C	
Storage Temperature Range	T _{STG}	-65 to +150	°C	
Lead Temperature (Soldering 10 sec)	T_LEAD	260	°C	
Power Dissipation @ T _A =50 °C	P _D	0.4	W	
ESD Rating (Human Body Mode) (Note 2)	НВМ	2	kV	
ESD Rating (Machine Mode) (Note 2)	MM	200	V	

THERMAL PERFORMANCE (Note 3)			
PARAMETER	SYMBOL	LIMIT	UNIT
Thermal Resistance Junction to Ambient	$R_{ hetaJA}$	160	°C/W

RECOMMENDED OPERATING CONDITION (T _A = 25°C unless otherwise specified) (Note 4)				
PARAMETER	SYMBOL	LIMIT	UNIT	
HV Pin Voltage to GND	V _{HV}	-0.3 to 450	V	
Power Supply Pin	V _{cc}	33	V	
DMG voltage to GND	V_{DMG}	-0.3 to 10	V	
OUT voltage to GND	V _{OUT}	-0.3 to 13	V	
RT voltage to GND	V _{CS}	-0.3 to 5	V	
CS voltage to GND	V _{CS}	-0.3 to 5	V	
COM voltage to GND	V _{COM}	-0.3 to 5	V	
Operating Junction Temperature Range	TJ	-40 to +150	°C	
Operating Ambient Temperature Range	T _{OPA}	-40 to +85	°C	

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage	•					
Supply current from HV pin	I _{HV}	V _{DC} =120V 10μF@V _{CC} Pin		2.4		mA
Turn-on Voltage	V _{CC_ON}	, 9 33	14.3	15.3	16.3	V
Turn-off Voltage	V _{CC_OFF}		7.3	7.8	8.3	V
Quiescent Current 1	I _{Q1}	V _{CC} =12V, @ V _{CC} off		68	100	μA
Quiescent Current 2	I _{Q2}	Start-up @ 4.5kHz		570	770	μA
Operation Supply Current	I _{CC}			1.5	2.5	mA
Protection						•
V _{CC} voltage protection	V _{OVPA}		32	33.5	35	V
Output voltage protection	V _{OVPS}		9.5	10	10.5	V
CS limit voltage	V _{OCP}		1.2	1.3	1.4	V
CS limit voltage (start-up)	V _{OCP_STR}			0.4		V
Short circuit protection (Note 5)	V_{SCP}			3.0		V
Oscillator	1	-	<u> </u>	L	•	l
Maximum on Time	t _{ON_MAX}		14	15	16	μs
GM Amplifier						•
Internal reference voltage	V_{REF}		362.6	370	377.4	mV
Transconductance	G _m			95		μA/V
Sink Current	I _{COMP_SINK}			32		μA
Source Current	I _{COMP_SOU}			32		μA
Driver						
Duamant valtage	V _{OH}	I _O = 10mA		0.68		V
Dropout voltage	V _{OL}	I _O = -10mA		0.18		V
Rise time	t _r	V _{CC} =20V, C _O =1nF		60		ns
Fall time	t _f	V _{CC} =20V, C _O =1nF		80		ns
Output clamp voltage	V _{O CLAMP}			13	15	V
Leading edge blanking time (Note 5)	LEB _t			0.5		ns
Thermal Section (Note 5, 6)		•	•		•	
Thermal Shutdown				120		°C

Note:


- Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. Functional
 operation of the device at these or any other conditions beyond those indicated in the operational sections of the
 specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
 reliability.
- 2. Devices are ESD sensitive. Handling precautions are recommended.
- 3. Thermal resistance is specified with the component mounted on a test board in free air with low effective thermal conductivity at T_A =25°C.
- 4. The device is not guaranteed to function outside its operating conditions.
- 5. Guaranteed by design.
- 6. Linear degeneration type.

ORDERING INFORMATION

PART NO.	PACKAGE	PACKING
TS19320CS RLG	SOP-8	2,500pcs / 13"Reel

FUNCTION BLOCK

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	HV	Pull high to line voltage for startup
2	RT	Maximum on time setting
3	CS	Input current sense pin.
4	COM	Output pin of error amplifier.
5	DMG	Zero current demagnetization sensing.
6	V_{CC}	Power supply pin for all internal circuitry.
7	OUT	Power MOS output pin.
8	GND	Ground return for all internal circuitry.

4

CHARACTERISTICS CURVES



Figure 1 - V_{CC_ON} vs. Junction Temperature

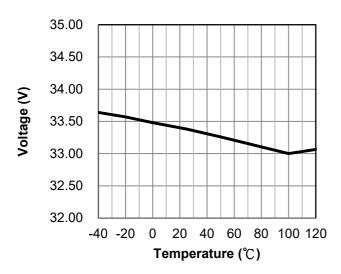


Figure 3 - V_{OVPA} vs. Junction Temperature

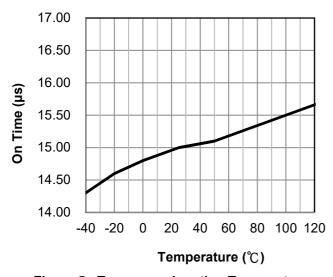
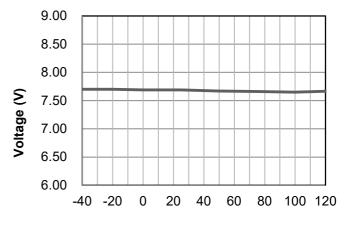



Figure 5 - T_{ON_MAX} vs. Junction Temperature

Temperature (°C)
Figure 2 - V_{CC OFF} vs. Junction Temperature

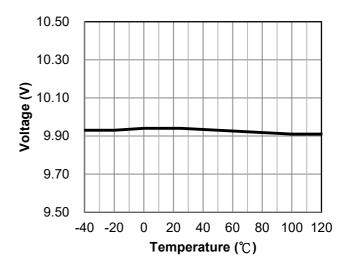


Figure 4 - V_{OVPS} vs. Junction Temperature

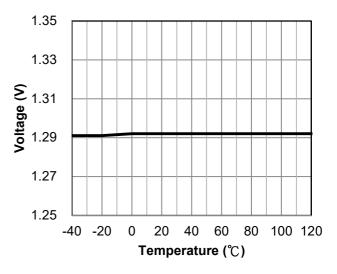


Figure 6 - V_{OCP} vs. Junction Temperature

APPLICATION INFORMATION

PSR Function Description

As a constant current primary-side controller with phase-cut dimmable and PFC function for LED lighting applications, the controller operates in boundary conduction mode (BCM) with constant on-time based regulation designed to achieve high power factor performance. The TS19320 has built-in high voltage (500V) startup circuit, V_{CC} over voltage protection, open LED protection, short LED protection, over temperature protection, primary-side current limit, and gate clamp function.

The average output current can be expressed as below.

$$I_{OUT_avg} = \frac{N_P}{N_S} \times \frac{0.370 * \eta}{2 \times R_S}$$

Where:

- I_{OUT avg} is the average output current
- N_P is the primary-side turn ratio
- N_S is the secondary-side turn ratio
- η is the efficiency
- R_S is the sensing resistor connected between the MOSFET source and the GND

Pin Definitions

HV Pin

Connect this pin to positive terminal of bulk capacitor to provide the startup current for the controller during V_{CC_ON} trigger on before.

RT Pin

This pin is to program the maximum on time by connecting a resistor to ground. Reference formula as below.

$$T_{ON} = \frac{14 \,\mu}{300k} \times (R_T - 100k) + 1\mu$$

CS Pin

MOSFET current signal sensing for multiplication and current limit setting function.

$$I_{CS(LIMIT)} = \frac{1.3}{R_S}$$

Where:

- I_{CS(LIMIT)} is the input current sence
- R_S is the sensing resistor connected between the MOSFET source and GND

COM Pin

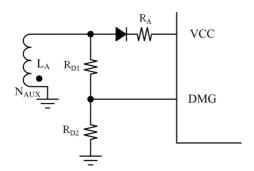
This is the output of the g_m amplifier. Connect with a suitable RC network to ground.

V_{cc} Pin

Power supply for the controller during normal operation. The controller will start up when V_{CC} reaches 15.3V (typical) and will shut-down when V_{CC} voltage is below 7.8V (typical). A decoupling capacitor should be connected between the V_{CC} and GND pin as close as possible.

The TS19320 performs V_{CC} over voltage protection though V_{CC} pin. Once V_{CC} pin exceeds in 33.5V, TS19320 turns off and latchs out the MOSFET switcher until V_{CC} goes below V_{CC} of off.

APPLICATION INFORMATION


Pin Definitions (Continue)

DMG

The Output voltage is reflected by the auxiliary winding (N_{AUX}) voltage of fly-back transformer, the DMG pin can sense output information to depart from start up voltage (V_{O_STR}) and protect voltage (V_{O_OVP}) .

When the DMG sense voltage under $V_{O\ STR}$, the circuit will work on short circuit protection, f_{STR} =1/ t_{STR} .

When the DMG sense voltage over V_{O_OVP} , the circuit will work on over voltage protection, it will latch out until V_{CC} goes below V_{CC_OFF} .

$$V_{O_OVP} = \frac{N_{SEC}}{N_{AUX}} \times V_{OVPS} \times \frac{R_{DI} + R_{D2}}{R_{D2}}$$

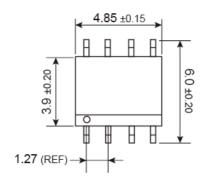
$$V_{O_STR} = \frac{N_{SEC}}{N_{AUX}} \times 3 \times \frac{R_{D1} + R_{D2}}{R_{D2}}$$

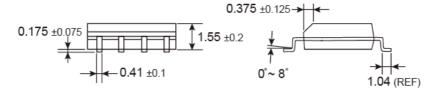
Where:

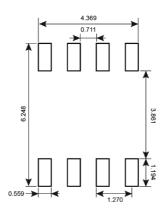
- V_{OUT_OVP} is the output-over-voltage protection point
- V_{OVPS} is the over voltage protection signal
- V_{O STR} is the start-up timer
- N_{AUX} is the number of auxiliary-winding turns
- N_{SEC} is the number of secondary-winding turns

OUT Pin

Gate drive for external MOSFET switch and is built-in gate clamp function.


GND Pin


GND is the reference node of internal circuit.


PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

SOP-8

SUGGESTED PAD LAYOUT (Unit: Millimeters)

8

MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product

 \mathbf{O} =Jan \mathbf{P} =Feb \mathbf{Q} =Mar \mathbf{R} =Apr

S =May T =Jun U =Jul V =Aug W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code (1~9, A~Z)

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.