

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Single-Stage Flyback or Buck-Boost Current Control with Active PFC and Integrated High Voltage MOSFET

DESCRIPTION

TS19706CS is a very efficient constant current controller IC for low cost non-dimmable LED lighting applications. The TS19706CS is configurable for either isolated primary side Flyback regulation or nonisolated buck-boost current regulation topology. Integrated 630V Power MOSFET and active power factor correction in Flyback mode reduces the external components required and BOM for implementation. The IC achieves high power factor correction and low total harmonic distortion (THD) with Boundary Conduction Mode (BCM) operation. Temperature compensation of line/load regulation allows constant current accuracy to be maintained to TS19706CS also provides over temperature protection, V_{CC} overvoltage protection, and system output open and short circuit protection.

FEATURES

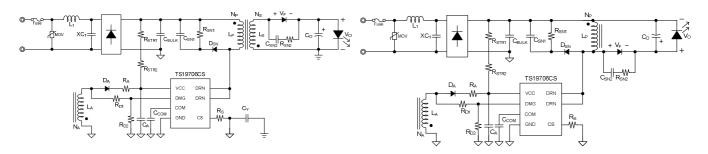
- Integrated 630V MOSFET
- Constant Current Accuracy within <±3%
- Primary-Side Feedback Control
- Application Voltage Range 80 V_{AC} ~ 308 V_{AC}
- Transition-Mode PFC Operation
- Built-in Active Power Factor Correction
- Good Line and Load Regulation
- Open-LED Protection on DMG pin
- Over-Voltage Protection on V_{CC} pin
- Short-LED Protection
- Cycle-by-Cycle Over Current Protection on CS pin
- Over-Temperature Protection
- Compliant to RoHS Directive 2011/65/EU and WEEE 2002/96/EC.
- Halogen-free according to IEC 61249-2-21.

APPLICATION

- LED lighting
- Down lights, Tube lamps, PAR Lamps, Bulbs

SOP-8

Pin Definition: 1. GND



1. GND 8. CS 2. COM 7. NC 3. DMG 6. DRN

4. V_{CC} 5. DRN

Notes: MSL 3 (Moisture Sensitivity Level) per J-STD-020

TYPICAL APPLICATION CIRCUIT

1

Flyback Converter

Buck-Boost Converter

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified) (Note 1)				
PARAMETER	SYMBOL	LIMIT	UNIT	
DRN Pin Voltage to GND	V_{DRN}	630	V	
Power supply pin	V _{CC}	40	V	
DMG voltage to GND	V_{DMG}	-0.3 to 40	V	
CS voltage to GND	V _{CS}	-0.3 to 5.5	V	
COM voltage to GND	V _{COM}	-0.3 to 5.5	V	
Junction Temperature Range	TJ	-40 to +150	°C	
Storage Temperature Range	T _{STG}	-65 to +150	°C	
Power Dissipation @T _A =50 °C	P _D	0.4	W	
ESD Rating (Human Body Model) (Note 2)	ESD	2	kV	

THERMAL PERFORMANCE (Note 3)					
PARAMETER	SYMBOL	LIMIT	UNIT		
Thermal Resistance - Junction to Case	R _{eJC}	50	°C/W		
Thermal Resistance - Junction to Ambient	$R_{\Theta JA}$	208	°C/W		

RECOMMENDED OPERATING CONDITION (T _A = 25°C unless otherwise specified) (Note 4)				
PARAMETER	SYMBOL	LIMIT	UNIT	
DRN Pin Voltage to GND	V_{DRN}	600	V	
Power supply pin	V _{CC}	33	V	
DMG voltage to GND	V_{DMG}	-0.3 to 10	V	
CS voltage to GND	V _{CS}	-0.3 to 5	V	
COM voltage to GND	V _{COM}	-0.3 to 5	V	
Operating Junction Temperature Range	TJ	-40 to +125	°C	
Operating Ambient Temperature Range	T _{OPA}	-40 to +85	°C	

ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise specified)						
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage						
Turn-on Voltage	V_{CC_ON}		14.3	15.3	16.3	V
Turn-off Voltage	V_{CC_OFF}		7.3	7.8	8.3	V
Quiescent Current 1	I _{Q1}	V _{CC} =12V, @ V _{CC} off		25	37.5	μA
Quiescent Current 2	I _{Q2}	Start-up @ 4.5kHz		550	825	μΑ
Operation Supply Current	I _{cc}			1.5	2.5	mA
Protection						
VCC voltage protection	V_{OVPA}		32.3	34	35.7	V
Output voltage protection	V _{OVPS}		9.5	10	10.5	V
CS limit voltage	V _{OCP}		1.2	1.35	1.5	V
CS limit voltage (start-up)	V _{OCP_STR}			0.43		V
Short circuit protection ^(Note 5)	V _{SCP}			3.0		V

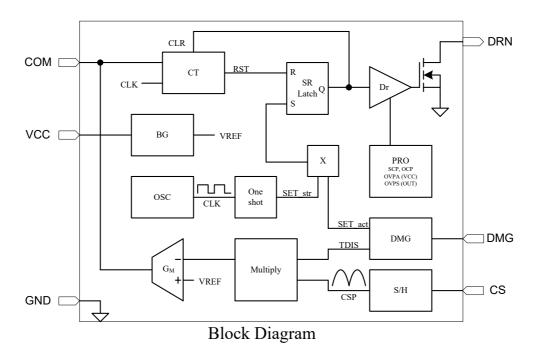
2

ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise specified)						
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Oscillator						
Start-up Timer	t _{STR}			222		μs
GM Amplifier						
Reference voltage	V_{REF}		362.6	370	377.4	mV
Transconductance	G_{m}			60		μΑ/V
Sink Current	I _{COMP_SINK}			20		μA
Source Current	I _{COMP_SOU}			20		μA
Driver						
Dronaut valtage	V _{OH}	I _O = 10mA		0.7		V
Dropout voltage	V _{OL}	I _O = -10mA		0.2		V
Rising time	t _r	V _{CC} =20V, C _O =1nF		60		ns
Falling time	t _f	V _{CC} =20V, C _O =1nF		80		ns
Output clamp voltage	V_{O_CLAMP}			13	15.0	V
Leading edge blanking time ^(Note 5)	LEB _t			0.5		μs
MOSFET Section						
Drain-Source Breakdown	D\/		630			V
Voltage	BV _{DS}		030			V
Drain-Source On-Resistance	R _{DS(ON)}	V_{GS} =10V, I_D =1A		3.2	3.8	Ω
Thermal Section (Note 5, 6)						
Thermal Shutdown				130		°C

Note:

- Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These
 are for stress ratings. Functional operation of the device at these or any other conditions beyond those
 indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating
 conditions for extended periods may remain possibility to affect device reliability.
- 2. Devices are ESD sensitive. Handling precautions recommended.
- 3. Thermal Resistance is specified with the component mounted on a low thermal conductivity test board in free air at T_A =25°C.

3


- 4. The device is not guaranteed to function outside its operating conditions.
- 5. Guaranteed by design.
- 6. Linear degeneration Type.

ORDERING INFORMATION

PART NO.	PACKAGE	PACKING
TS19706CS RLG	SOP-8	2,500pcs / 13"Reel

FUNCTION BLOCK

4

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION	
1	GND	Ground return for all internal circuitry.	
2	СОМ	Output pin of error amplifier.	
3	DMG	Zero current demagnetization sensing.	
4	V _{cc}	Power supply pin for all internal circuitry.	
5	DRN	Drain of the internal power MOSFET	
6	DRN	Drain of the internal power MOSFET	
7	NC	Not connected.	
8	CS	Input current sense pin	

CHARACTERISTICS CURVES

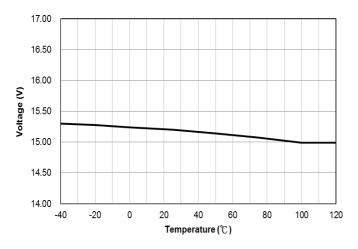


Figure 1 - $V_{\text{CC_ON}}$ vs. Junction Temperature

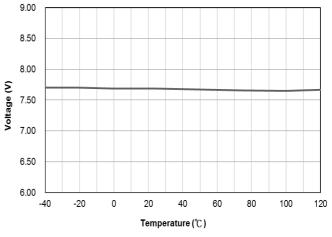


Figure 2 - V_{CC_OFF} vs. Junction Temperature

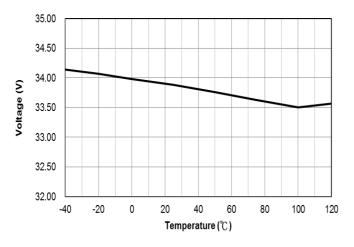


Figure 3 - V_{OVPA} vs. Junction Temperature

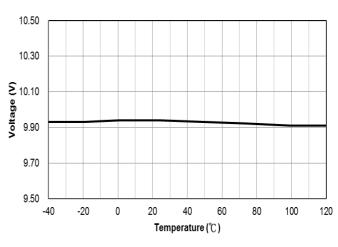


Figure 4 - V_{OVPS} vs. Junction Temperature

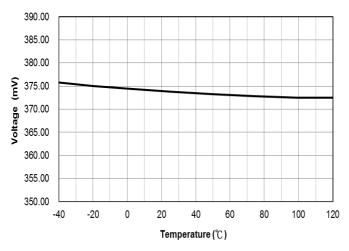


Figure 5 - V_{REF} vs. Junction Temperature

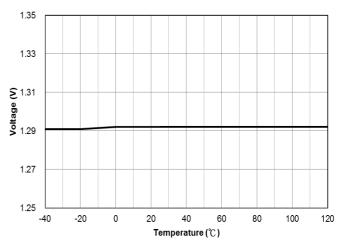


Figure 6 - V_{OCP} vs. Junction Temperature

APPLICATION INFORMATION

Function Description

The TS19706CS is configurable for either isolated primary side Flyback regulation or non-isolated buck-boost current regulation topologies. The IC active power factor correction in Flyback mode and achieves constant current accuracy and low total harmonic distortion (THD) using Boundary Conduction Mode (BCM) operation. An integrated 630V switching MOSFET reduces the external components required for application implementation. The TS19706CS has built-in V_{CC} over voltage protection, open LED protection, short LED protection, over temperature protection, and primary-side current limit.

The average output current can be expressed as below.

$$I_{OUT_avg} = \frac{N_P}{N_S} \times \frac{0.370 * \eta}{2 \times R_S}$$

Where

- I_{OUT avg} is the average output current
- N_P is the primary-side turn ratio
- N_S is the secondary-side turn ratio
- η is the efficiency
- R_s is the sensing resistor connected between the MOSFET source and the GND

Pin Definitions

COM (Compensation)

This is the output of the g_m amplifier. Connect with a suitable RC network to ground.

GND (Ground)

GND is the reference node of internal circuit.

CS (Current Sense)

MOSFET current signal sensing for multiplication and current limit setting function.

$$I_{CS(LIMIT)} = \frac{1.35}{Rs}$$

Where

- I_{CS(LIMIT)} is the input current sence
- R_S is the sensing resistor connected between the MOSFET source and GND

DRN (Drain)

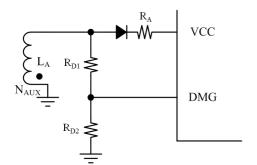
Internal Power MOSFET Drain.

V_{cc}

Power supply for the controller during normal operation. The controller will start up when V_{CC} reaches 15.3V (typical) and will shut-down when V_{CC} voltage is below 7.8V (typical). A decoupling capacitor should be connected between the V_{CC} and GND pin as close as possible.

The TS19706CS performs V_{CC} over voltage protection though V_{CC} pin. Once V_{CC} pin exceeds in 34V, TS19706CS turns off and latchs out the MOSFET switcher until V_{CC} goes below V_{CC_OFF} .

6


APPLICATION INFORMATION (CONTINUE)

DMG (Zero Current Demegnetization)

The output voltage is defined by the auxiliary winding (N_{AUX}) of the fly-back transformer. The DMG pin senses output information to protect against undervoltage ($V_O < V_{O \ STR}$) and overvoltage ($V_O > V_{O \ OVP}$).

When the DMG senses voltage under V_{O_STR} the circuit will operate in short circuit protection mode, f_{STR} =1/ t_{STR} .

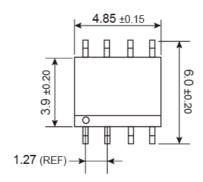
When the DMG senses voltage over V_{O_OVP} , the circuit will implement over-voltage protection latch until V_{CC} goes below $V_{CC\ OFF}$.

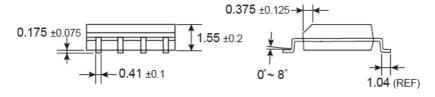
$$V_{O_OVP} = \frac{N_{SEC}}{N_{AUX}} \times V_{OVPS} \times \frac{R_{D1} + R_{D2}}{R_{D2}}$$

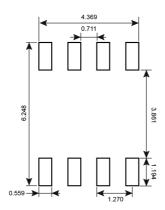
$$V_{O_STR} = \frac{N_{SEC}}{N_{AUX}} \times 3 \times \frac{R_{DI} + R_{D2}}{R_{D2}}$$

Where:

V_{OUT OVP} is the output-over-voltage protection point


7


- V_{OVPS} is the over voltage protection signal
- V_{O_STR} is the start-up timer
- N_{AUX} is the number of auxiliary-winding turns
- N_{SEC} is the number of secondary-winding turns


PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

SOP-8

SUGGESTED PAD LAYOUT (Unit: Millimeters)

8

MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product

 $oldsymbol{O}$ =Jan $oldsymbol{P}$ =Feb $oldsymbol{Q}$ =Mar $oldsymbol{R}$ =Apr

S =May T =Jun U =Jul V =Aug W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code (1~9, A~Z)

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.