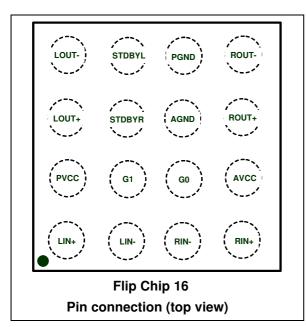
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TS2012EI

Filter-free Flip Chip stereo 2 x 2.5 W class D audio power amplifier Datasheet - production data

Features

- Operates from V_{CC} = 2.5 to 5.5 V
- Dedicated standby mode active low for each channel
- Output power per channel: 1.15 W at 5 V or 0.63 W at 3.6 V into 8 Ω with 1% THD+N max.
- Output power per channel: 1.85 W at 5 V into 4 Ω with 1% THD+N max.
- Output short-circuit protection
- Four gain setting steps: 6, 12, 18, 24 dB
- Low current consumption
- PSSR: 63 dB typ. at 217 Hz.
- Fast startup phase: 7.8 ms
- Thermal shutdown protection
- Flip Chip 16 bump lead-free package

Table 1. Device summary

Order code	Temperature range	Package	Packing	Marking
TS2012EIJT	- 40 °C to +85 °C	Flip Chip 16	Tape and reel	K0

April 2014

DocID026152 Rev 1

This is information on a product in full production.

Applications

- Cellular phones
- PDA

Description

The TS2012EI is a fully-differential stereo class D power amplifier able to drive up to 1.15 W into an 8 Ω load at 5 V per channel. It achieves better efficiency compared to typical class AB audio amps.

The device has four different gain settings utilizing two digital pins: G0 and G1.

Pop and click reduction circuitry provides low on/off switch noise while allowing the device to start within 8 ms.

Two standby pins (active low) allow each channel to be switched off separately.

The TS2012EI is available in a Flip Chip 16 bump lead-free package.

Contents

1	Abso	lute maximum ratings and operating conditions	3
2	Туріс	al application	5
3	Electi	rical characteristics	. 7
	3.1	Electrical characteristics tables	7
	3.2	Electrical characteristic curves	13
4	Appli	cation information	21
	4.1	Differential configuration principle	21
	4.2	Gain settings	21
	4.3	Common mode feedback loop limitations	21
	4.4	Low frequency response	22
	4.5	Decoupling of the circuit	23
	4.6	Wake-up time (t_{WU}) and shutdown time (t_{STBY})	23
	4.7	Consumption in shutdown mode	25
	4.8	Single-ended input configuration	25
	4.9	Output filter considerations	26
	4.10	Short-circuit protection	26
	4.11	Thermal shutdown	27
5	Packa	age information	28
6	Revis	ion history	31

1

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{in}	Input voltage ⁽²⁾	GND to V _{CC}	V
T _{oper}	Operating free air temperature range	-40 to + 85	°C
T _{stg}	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽³⁾	200	°C/W
Pd	Power dissipation	Internally limited ⁽⁴⁾	
ESD	HBM: human body model ⁽⁵⁾	2	kV
230	MM: machine model ⁽⁶⁾	200	V
Latch-up	Latch-up immunity	200	mA
V _{STBY}	Standby pin maximum voltage	GND to V _{CC}	V
	Lead temperature (soldering, 10sec)	260	°C
	Output short-circuit protection ⁽⁷⁾		

1. All voltage values are measured with respect to the ground pin.

- 2. The magnitude of the input signal must never exceed V $_{CC}$ + 0.3 V / GND 0.3 V.
- 3. The device is protected in case of over temperature by a thermal shutdown active at 150°C.
- 4. Exceeding the power derating curves during a long period will cause abnormal operation.
- 5. Human body model: 100 pF discharged through a $1.5 k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 6. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- 7. Implemented short-circuit protection protects the amplifier against damage by short-circuit between positive and negative outputs of each channel and between outputs and ground.

Symbol	Parameter	Value	Unit				
V _{CC}	Supply voltage	2.5 to 5.5	V				
V _{in}	Input voltage range	GND to V _{CC}	V				
V _{ic}	Input common mode voltage ⁽¹⁾	GND+0.5V to V _{CC} -0.9V	V				
V _{STBY}	Standby voltage input ⁽²⁾ Device ON Device in STANDBY ⁽³⁾	$\begin{array}{ll} 1.4 \leq & V_{STBY} \leq & V_{CC} \\ \text{GND} \leq & V_{STBY} \leq & 0.4 \end{array}$	V				
RL	Load resistor	≥ 4	Ω				
V _{IH}	GO, G1 - high level input voltage ⁽⁴⁾	$1.4 \le V_{IH} \le V_{CC}$	V				
V _{IL}	GO, G1 - low level input voltage	$GND \leq V_{IL} \leq 0.4$	V				
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾	90	°C/W				

Table 3. Operating conditions

I V₀₀ I ≤ 40 mV max with all differential gains except 24 dB. For 24 dB gain, input decoupling capacitors are mandatory.

2. Without any signal on standby pin, the device is in standby (internal 300 k Ω +/-20% pull-down resistor).

3. Minimum current consumption is obtained when V_{STBY} = GND.

Between G0, G1pins and _{GND}, there is an internal 300 kΩ (+/-20%) pull-down resistor. When pins are floating, the gain is 6 dB. In full standby (left and right channels OFF), these resistors are disconnected (HiZ input).

5. With a 4-layer PCB.

2 Typical application

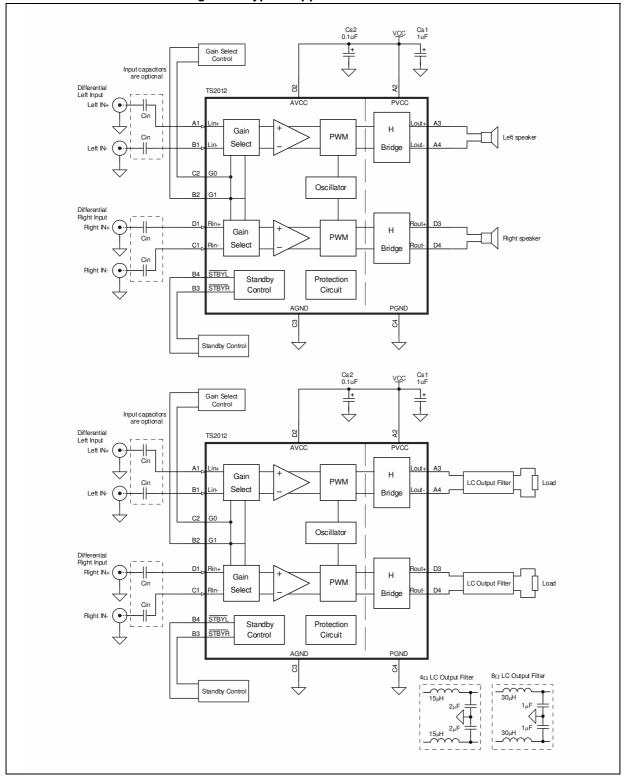


Figure 1. Typical application schematics

Components	Functional description		
C _{S1} , C _{S2} Supply capacitor that provides power supply filtering.			
C _{in}	Input coupling capacitors (optional) that block the DC voltage at the amplifier input terminal. The capacitors also form a high pass filter with Z_{in} ($F_{cl} = 1 / (2 \times \pi \times Z_{in} \times C_{in})$). Be aware that value of Z_{in} is changing with gain setting.		

	Table 5. Pin description					
Pin number	Pin name	Description				
A1	Lin+	Left channel positive differential input				
A2	PVCC	Power supply voltage				
A3	Lout+	Left channel positive output				
A4	Lout-	Left channel negative output				
B1	Lin-	Left channel negative differential input				
B2	G1	Gain select pin (MSB)				
B3	STBYR	Standby pin (active low) for right channel output				
B4	STBYL	Standby pin (active low) for left channel output				
C1	Rin-	Right channel negative differential input				
C2	G0	Gain select pin (LSB)				
C3	AGND	Analog ground				
C4	PGND	Power ground				
D1	Rin+	Right channel positive differential input				
D2	AVCC	Analog supply voltage				
D3	Rout+	Right channel positive output				
D4	Rout-	Right channel negative output				

Table 4. External component description

3 Electrical characteristics

3.1 Electrical characteristics tables

Table 6. V_{CC} = +5 V, GND = 0 V, V_{ic} = 2.5 V, T_{amb} = 25° C (unless otherwise specified)

Symbol	Parameters and test conditions	Min.	Тур.	Max.	Unit
I _{CC}	Supply current No input signal, no load, both channels		5	7	mA
I _{STBY}	Standby current No input signal, V _{STBY} = GND		1	2	μA
V _{oo}	Output offset voltage Floating inputs, G = 6 dB, $R_L = 8 \Omega$			25	mV
Po	Output power THD + N = 1% max, f = 1 kHz, R _L = 4 Ω THD + N = 1% max, f = 1 kHz, R _L = 8 Ω THD + N = 10% max, f = 1 kHz, R _L = 4 Ω THD + N = 10% max, f = 1 kHz, R _L = 8 Ω		1.85 1.15 2.5 1.6		W
THD + N	Total harmonic distortion + noise $P_0 = 0.8 \text{ W}, \text{ G} = 6 \text{ dB}, \text{ f} = 1 \text{ kHz}, \text{ R}_L = 8 \Omega$		0.5		%
Efficiency	Efficiency per channel $P_o = 1.85$ W, $R_L = 4 \Omega + 15 \mu H$ $P_o = 1.16$ W, $R_L = 8 \Omega + 15 \mu H$		78 88		%
PSRR	Power supply rejection ratio with inputs grounded $C_{in} = 1 \ \mu F^{(1)}$, f = 217 Hz, R _L = 8 Ω , Gain = 6 dB, $V_{ripple} = 200 \ mV_{pp}$		65		dB
Crosstalk	Channel separation $P_0 = 0.9 \text{ W}, \text{ G} = 6 \text{ dB}, \text{ f} = 1 \text{ kHz}, \text{ R}_L = 8 \Omega$		90		dB
CMRR	Common mode rejection ratio $C_{in} = 1 \ \mu\text{F}, f = 217 \ \text{Hz}, R_L = 8 \ \Omega, \text{Gain} = 6 \ \text{dB},$ $\Delta_{\text{VICM}} = 200 \ \text{mV}_{pp}$		63		dB
Gain	Gain value with no load $G1 = G0 = V_{IL}$ $G1 = V_{IL}$ and $G0 = V_{IH}$ $G1 = V_{IH}$ and $G0 = V_{IL}$ $G1 = G0 = V_{IH}$	5.5 11.5 17.5 23.5	6 12 18 24	6.5 12.5 18.5 24.5	dB
Z _{in}	Single-ended input impedance Referred to ground Gain = 6 dB Gain = 12 dB Gain = 18 dB Gain = 24 dB	24 24 12 6	30 30 15 7.5	36 36 18 9	kΩ
F _{PWM}	Pulse width modulator base frequency	190	280	370	kHz

Symbol	Parameters and test conditions	Min.	Тур.	Max.	Unit
SNR	Signal to noise ratio (A-weighting) $P_o = 1.1 \text{ W}, \text{ G} = 6 \text{ dB}, \text{ R}_L = 8 \Omega$		99		dB
t _{WU}	Total wake-up time ⁽²⁾	9	13	16.5	ms
t _{STBY}	Standby time ⁽²⁾	11	15.8	20	ms
V _N	Output voltage noise f = 20 Hz to 20 kHz, $R_L = 8 \Omega$ Unweighted (filterless, G = 6 dB) A-weighted (filterless, G = 6 dB) Unweighted (with LC output filter, G = 6 dB) A-weighted (with LC output filter, G = 6 dB) Unweighted (filterless, G = 24 dB) A-weighted (filterless, G = 24 dB) Unweighted (with LC output filter, G = 24 dB) A-weighted (with LC output filter, G = 24 dB)		61 31 59 31 87 52 87 53		μV _{RMS}

Table 6. V_{CC} = +5 V, GND = 0 V, V_{ic} = 2.5 V, T_{amb} = 25° C (unless otherwise specified) (continued)

1. Dynamic measurements - $20*\log(rms(V_{out})/rms(V_{ripple}))$). V_{ripple} is the superimposed sinus signal to V_{CC} at f = 217 Hz.

2. See Section 4.6: Wake-up time (t_{WU}) and shutdown time (t_{STBY}) on page 23.

Symbol	7. $V_{CC} = +3.6 \text{ V}, \text{ GND} = 0 \text{ V}, V_{ic} = 1.8 \text{ V}, I_{amb} = 25^{\circ} \text{ C} (100)$ Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current No input signal, no load, both channels		3.5	5.5	mA
I _{STBY}	Standby current No input signal, V _{STBY} = GND		0.7	2	μΑ
V _{oo}	Output offset voltage Floating inputs, G = 6 dB, $R_L = 8 \Omega$			25	mV
Po	Output power THD + N = 1% max, f = 1 kHz, R _L = 4 Ω THD + N = 1% max, f = 1 kHz, R _L = 8 Ω THD + N = 10% max, f = 1 kHz, R _L = 4 Ω THD + N = 10% max, f = 1 kHz, R _L = 8 Ω		0.96 0.63 1.3 0.8		W
THD + N	Total harmonic distortion + noise $P_0 = 0.45 \text{ W}, \text{ G} = 6 \text{ dB}, \text{ f} = 1 \text{ kHz}, \text{ R}_L = 8 \Omega$		0.35		%
Efficiency	Efficiency per channel $P_o = 0.96 \text{ W}, R_L = 4 \Omega + 15 \infty \text{H}$ $P_o = 0.63 \text{ W}, R_L = 8 \Omega + 15 \infty \text{H}$		78 88		%
PSRR	Power supply rejection ratio with inputs grounded $C_{in} = 1 \ \mu F^{(1)}$, f = 217 Hz, $R_L = 8 \ \Omega$, Gain = 6 dB, $V_{ripple} = 200 \ mV_{pp}$		65		dB
Crosstalk	Channel separation G = 6 dB, f = 1 kHz, $R_L = 8 \Omega$		90		
CMRR	Common mode rejection ratio $C_{in} = 1 \ \mu\text{F}, f = 217 \ \text{Hz}, R_L = 8 \ \Omega, \text{Gain} = 6 \ \text{dB},$ $\Delta_{\text{VICM}} = 200 \ \text{mV}_{\text{pp}}$		62		dB
Gain	Gain value with no load $G1 = G0 = V_{IL}$ $G1 = V_{IL}$ and $G0 = V_{IH}$ $G1 = V_{IH}$ and $G0 = V_{IL}$ $G1 = G0 = V_{IH}$	5.5 11.5 17.5 23.5	6 12 18 24	6.5 12.5 18.5 24.5	dB
Z _{in}	Single-ended input impedance Referred to ground Gain = 6 dB Gain = 12 dB Gain = 18 dB Gain = 24 dB	24 24 12 6	30 30 15 7.5	36 36 18 9	kΩ
F _{PWM}	Pulse width modulator base frequency	190	280	370	kHz
SNR	Signal-to-noise ratio (A-weighting) $P_0 = 0.6 \text{ W}, \text{ G} = 6 \text{ dB}, \text{ R}_L = 8 \Omega$		96		dB
t _{WU}	Total wake-up time ⁽²⁾	7.5	11.3	15	ms

Table 7. V_{CC} = +3.6 V, GND = 0 V, V_{ic} = 1.8V, T_{amb} = 25° C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{STBY}	Standby time ⁽²⁾	10	13.8	18	ms
V _N	Output voltage noise f = 20 Hz to 20 kHz, $R_L = 8 \Omega$ Unweighted (filterless, G = 6 dB) A-weighted (filterless, G = 6 dB) Unweighted (with LC output filter, G = 6 dB) A-weighted (with LC output filter, G = 6 dB) Unweighted (filterless, G = 24 dB) A-weighted (filterless, G = 24 dB) Unweighted (with LC output filter, G = 24 dB) A-weighted (with LC output filter, G = 24 dB)		54 28 52 27 80 50 79 49		μV _{RMS}

Table 7. V_{CC} = +3.6 V, GND = 0 V, V_{ic} = 1.8V, T_{amb} = 25° C (unless otherwise specified) (continued)

1. Dynamic measurements - $20*\log(rms(V_{out})/rms(V_{ripple}))$. V_{ripple} is the superimposed sinus signal to V_{CC} at f = 217 Hz.

2. See Section 4.6: Wake-up time (t_{WU}) and shutdown time (t_{STBY}) on page 23.

Symbol	8. $v_{CC} = +2.5 v$, GND = 0 v, $v_{ic} = 1.25 v$, $T_{amb} = 25 v$. Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current No input signal, no load, both channels		2.8	4	mA
I _{STBY}	Standby current No input signal, V _{STBY} = GND		0.45	2	μA
V _{oo}	Output offset voltage Floating inputs, G = 6 dB, $R_L = 8 \Omega$			25	mV
Po	Output power THD + N = 1% max, f = 1 kHz, R _L = 4 Ω THD + N = 1% max, f = 1 kHz, R _L = 8 Ω THD + N = 10% max, f = 1 kHz, R _L = 4 Ω THD + N = 10% max, f = 1 kHz, R _L = 8 Ω		0.45 0.3 0.6 0.38		W
THD + N	Total harmonic distortion + noise $P_0 = 0.2$ W, G = 6 dB, f = 1 kHz, $R_L = 8 \Omega$		0.2		%
Efficiency	Efficiency per channel $P_o = 0.45$ W, $R_L = 4 \Omega + 15 \mu H$ $P_o = 0.3$ W, $R_L = 8 \Omega + 15 \mu H$		78 87		%
PSRR	Power supply rejection ratio with inputs grounded $C_{in} = 1 \ \mu F^{(1)}, f = 217 \ Hz, R_L = 8 \ \Omega, Gain = 6 \ dB,$ $V_{ripple} = 200 \ mV_{pp}$		65		dB
Crosstalk	Channel separation G = 6 dB, f = 1 kHz, $R_L = 8 \Omega$		90		
CMRR	Common mode rejection ratio $C_{in} = 1 \ \mu\text{F}, f = 217 \ \text{Hz}, R_L = 8 \ \Omega, \text{ Gain} = 6 \ \text{dB},$ $\Delta_{\text{VICM}} = 200 \ \text{mV}_{\text{pp}}$		62		dB
Gain	$ Gain value with no load \\ G1 = G0 = V_{IL} \\ G1 = V_{IL} and G0 = V_{IH} \\ G1 = V_{IH} and G0 = V_{IL} \\ G1 = G0 = V_{IH} $	5.5 11.5 17.5 23.5	6 12 18 24	6.5 12.5 18.5 24.5	dB
Z _{in}	Single-ended input impedance Referred to ground Gain = 6 dB Gain = 12 dB Gain = 18 dB Gain = 24 dB	24 24 12 6	30 30 15 7.5	36 36 18 9	kΩ
F _{PWM}	Pulse width modulator base frequency	190	280	370	kHz
SNR	Signal-to-noise ratio (A-weighting) $P_0 = 0.28$ W, G = 6 dB, $R_L = 8 \Omega$		93		dB
t _{WU}	Total wake-up time ⁽²⁾	3	7.8	12	ms

Table 8. V_{CC} = +2.5 V, GND = 0 V, V_{ic} = 1.25 V, T_{amb} = 25 °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{STBY}	Standby time ⁽²⁾	8	12	16	ms
V _N	Output voltage noise f = 20 Hz to 20 kHz, $R_L = 8 \Omega$ Unweighted (filterless, G = 6 dB) A-weighted (filterless, G = 6 dB) Unweighted (with LC output filter, G = 6 dB) A-weighted (with LC output filter, G = 6 dB) Unweighted (filterless, G = 24 dB) A-weighted (filterless, G = 24 dB) Unweighted (with LC output filter, G = 24 dB) A-weighted (with LC output filter, G = 24 dB)		51 26 49 26 77 49 76 48		μV _{RMS}

Table 8. V_{CC} = +2.5 V, GND = 0 V, V_{ic} = 1.25 V, T_{amb} = 25 °C (unless otherwise specified) (continued)

1. Dynamic measurements - $20*\log(rms(V_{out})/rms(V_{ripple}))$. V_{ripple} is the superimposed sinus signal to V_{CC} at f = 217 Hz.

2. See Section 4.6: Wake-up time (t_{WU}) and shutdown time (t_{STBY}) on page 23.

3.2 **Electrical characteristic curves**

The graphs shown in this section use the following abbreviations.

- R_L + 15 μ H or 30 μ H = pure resistor + very low series resistance inductor. •
- Filter = LC output filter (1 μ F+ 30 μ H for 4 Ω and 0.5 μ F+15 μ H for 8 Ω).

All measurements are done with $C_{S1}=1 \ \mu F$ and $C_{S2}=100 \ nF$ (*Figure 2*), except for the PSRR where C_{S1} is removed (*Figure 3*).

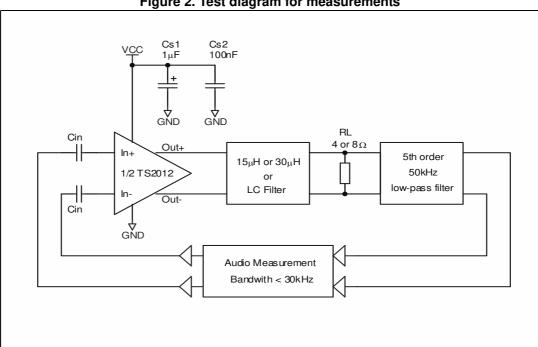
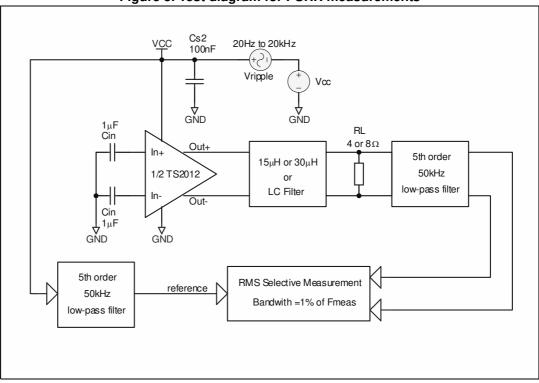
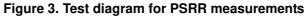




Figure 2. Test diagram for measurements

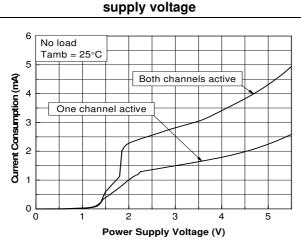


Figure 4. Current consumption vs. power supply voltage Figure 5. Current consumption vs. standby voltage (one channel)

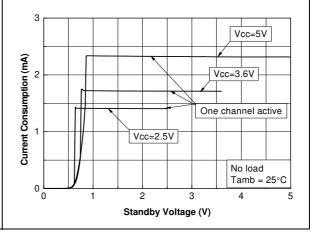
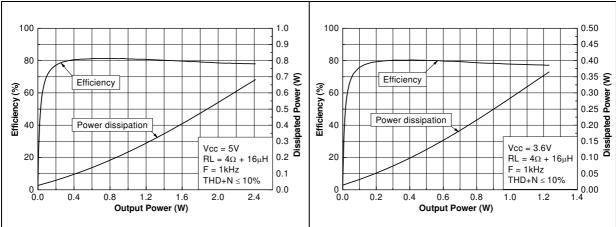
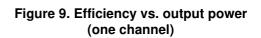
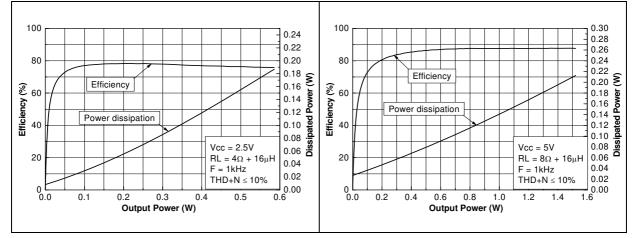
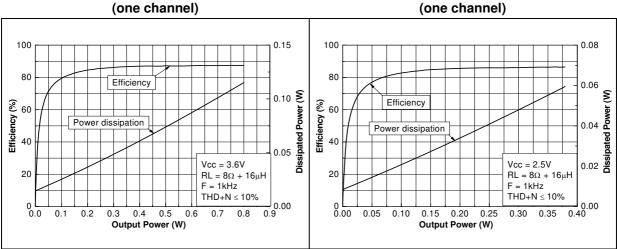


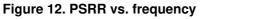
Figure 7. Efficiency vs. output power

(one channel)

Figure 6. Efficiency vs. output power (one channel)

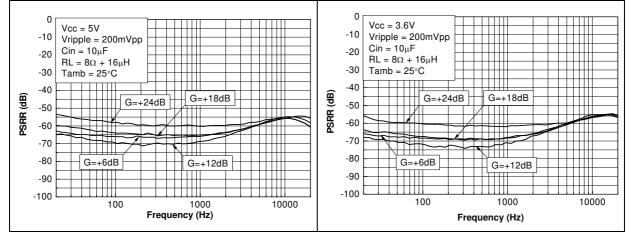





Figure 8. Efficiency vs. output power (one channel)



DocID026152 Rev 1

Figure 10. Efficiency vs. output power (one channel)



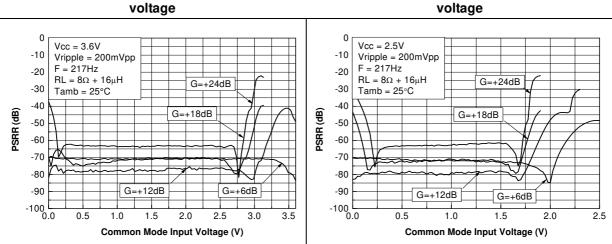

Figure 15. PSRR vs. common mode input voltage

Figure 11. Efficiency vs. output power

Figure 13. PSRR vs. frequency

Figure 16. PSRR vs. common mode input voltage

Figure 17. PSRR vs. common mode input voltage

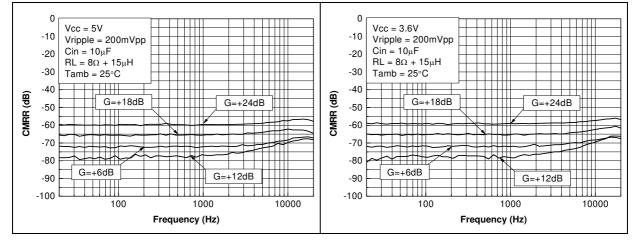
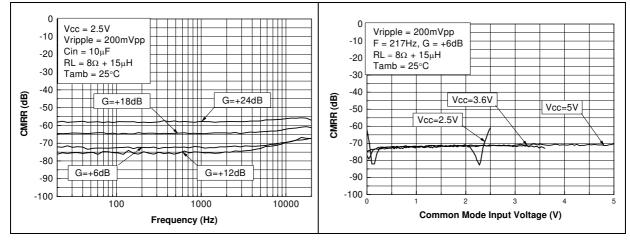



Figure 18. CMRR vs. frequency

Figure 21. CMRR vs. common mode input voltage

Vripple = 200mVpp

Vcc=2.5V

 $RL=8\Omega\,+\,15\mu H$

Tamb = 25°C

F = 217Hz, G = +12dB

0

-10

-20

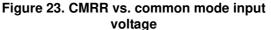
-30

-40

-50

-60

-70


-80

-90

-100

CMRR (dB)

Vcc=3.6V

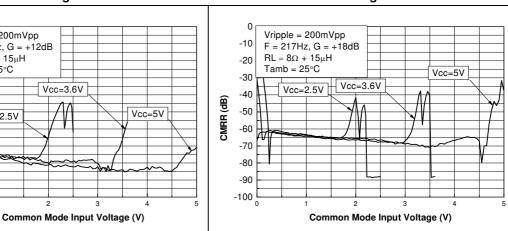


Figure 24. CMRR vs. common mode input voltage

2

3

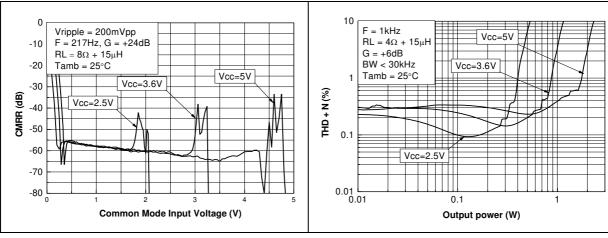
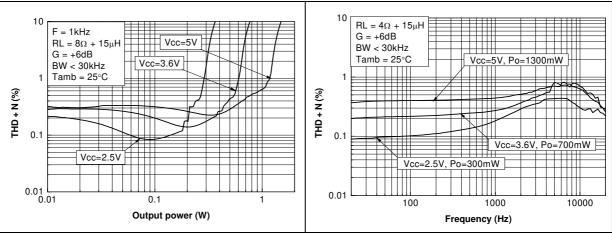



Figure 27. THD+N vs. frequency

Figure 25. THD+N vs. output power

DocID026152 Rev 1

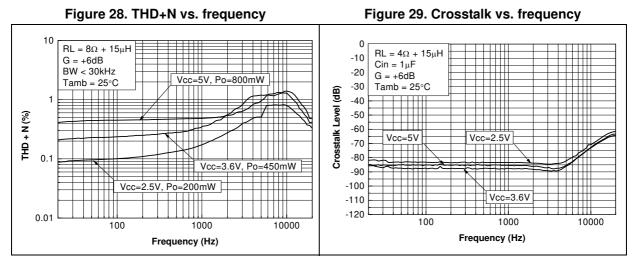
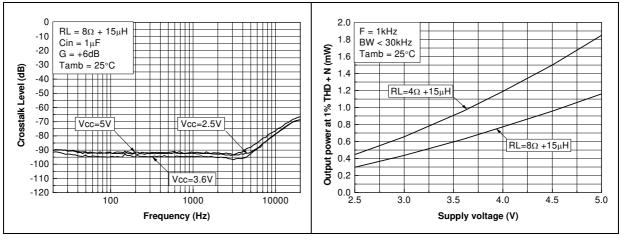
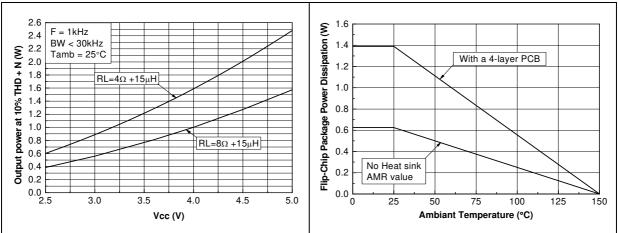


Figure 30. Crosstalk vs. frequency

Figure 31. Output power vs. power supply voltage

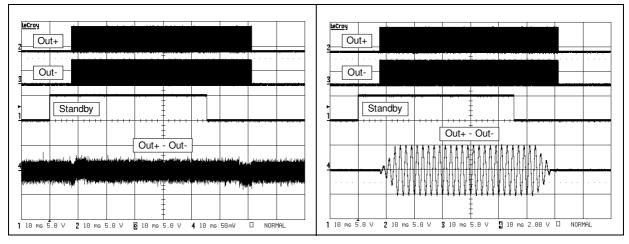

Figure 32. Output power vs. power supply voltage

Figure 34. Startup and shutdown phase V_{CC} = 5 V, G = 6 dB, C_{in} = 1 $\mu\text{F},$ inputs grounded

Figure 35. Startup and shutdown phase V_{CC} = 5 V, G = 6 dB, C_{in} = 1 μ F, V_{in} = 2 V_{pp}, F = 500 Hz

4 Application information

4.1 Differential configuration principle

The TS2012EI is a monolithic fully-differential input/output class D power amplifier. The TS2012EI also includes a common-mode feedback loop that controls the output bias value to average it at $V_{CC}/2$ for any DC common mode input voltage. This allows the device to always have a maximum output voltage swing, and by consequence, maximize the output power. Moreover, as the load is connected differentially compared with a single-ended topology, the output is four times higher for the same power supply voltage.

The **advantages** of a full-differential amplifier are:

- high PSRR (power supply rejection ratio),
- high common mode noise rejection,
- virtually zero pop without additional circuitry, giving a faster start-up time compared to conventional single-ended input amplifiers,
- easier interfacing with differential output audio DACs,
- no input coupling capacitors required thanks to the common mode feedback loop.

4.2 Gain settings

In the flat region of the frequency-response curve (no input coupling capacitor or internal feedback loop + load effect), the differential gain can be set to 6, 12 18, or 24 dB, depending on the logic level of the G0 and G1 pins, as shown in *Table 9*.

rabie er dan bottinge mit de and er prie							
G1	G0	Gain (dB)	Gain (V/V)				
0	0	6	2				
0	1	12	4				
1	0	18	8				
1	1	24	16				

Table 9. Gain settings with G0 and G1 pins

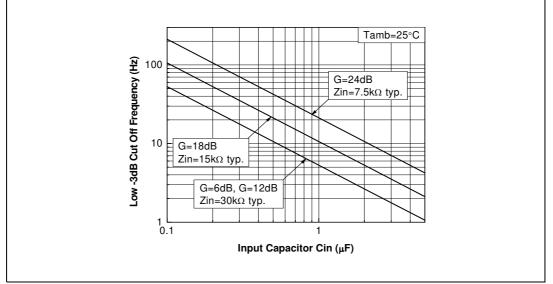
Note: Between pins G0, G1 and GND there is an internal 300 k Ω (+/-20%) resistor. When the pins are floating, the gain is 6 dB. In full standby (left and right channels OFF), these resistors are disconnected (HiZ input).

4.3 Common mode feedback loop limitations

As explained previously, the common mode feedback loop allows the output DC bias voltage to be averaged at $V_{CC}/2$ for any DC common mode bias input voltage.

Due to the V_{ic} limitation of the input stage (see *Table 3: Operating conditions on page 4*), the common mode feedback loop can fulfill its role only within the defined range.

If a low frequency bandwidth limitation is required, it is possible to use input coupling capacitors. In the low-frequency region, the input coupling capacitor C_{in} starts to have an effect. C_{in} forms, with the input impedance Z_{in} , a first order high-pass filter with a -3 dB cut-off frequency (see *Table 6* to *Table 8*).


$$F_{CL} = \frac{1}{2 \cdot \pi \cdot Z_{in} \cdot C_{in}}$$

So, for a desired cut-off frequency F_{CL} , C_{in} is calculated as follows.

$$C_{in} = \frac{1}{2 \cdot \pi \cdot Z_{in} \cdot F_{CL}}$$

with F_{CL} in Hz, Z_{in} in Ω and C_{in} in F.

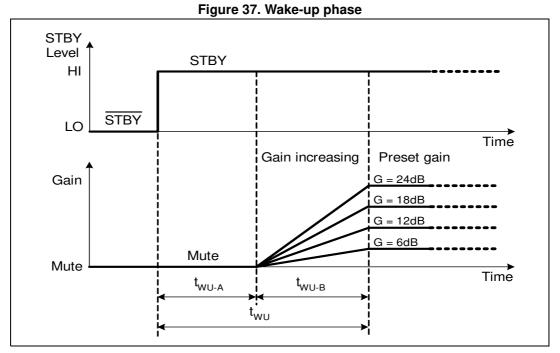
The input impedance Z_{in} is for the whole power supply voltage range and it changes with the gain setting. There is also a tolerance around the typical values (see *Table 6* to *Table 8*).

4.5 Decoupling of the circuit

Power supply capacitors, referred to as C_{S1} and $C_{S2},$ are needed to correctly bypass the TS2012EI.

The TS2012EI has a typical switching frequency of 280 kHz and an output fall and rise time of approximately 5 ns. Due to these very fast transients, careful decoupling is mandatory.

A 1 μ F ceramic capacitor (C_{S1}) between PVCC and PGND and one additional ceramic capacitor 0.1 μ F (C_{S2}) are enough. A 1 μ F capacitor must be located as close as possible to the device PVCC pin in order to avoid any extra parasitic inductance or resistance created by a long track wire. Parasitic loop inductance, in relation with di/dt, introduces overvoltage that decreases the global efficiency of the device and may cause, if this parasitic inductance is too high, a breakdown of the TS2012EI. For filtering low-frequency noise signals on the power line, you can use a C_{S1} capacitor of 4.7 μ F or more.


In addition, even if a ceramic capacitor has an adequate high frequency ESR (equivalent series resistance) value, its current capability is also important. A size of 0603 is a good compromise, particularly when a 4 Ω load is used.

Another important parameter is the rated voltage of the capacitor. A 1 μ F/6.3 V capacitor used at 5 V, loses about 50% of its value. With a power supply voltage of 5 V, the decoupling value, instead of 1 μ F, could be reduced to 0.5 μ F. As C_S has particular influence on the THD+N in the medium-to-high frequency region, this capacitor variation becomes decisive. In addition, less decoupling means higher overshoots, which can be problematic if they reach the power supply AMR value (6 V).

4.6 Wake-up time (t_{WU}) and shutdown time (t_{STBY})

During the wake-up sequence when the standby is released to set the device ON, there is a delay. The wake-up sequence of the TS2012EI consists of two phases. During the first phase t_{WU-A} , a digitally-generated delay, mutes the outputs. Then, the gain increasing phase t_{WU-A} begins. The gain increases smoothly from the mute state to the preset gain selected by the digital pins G0 and G1. This startup sequence avoids any pop noise during startup of the amplifier. Refer to *Figure 37: Wake-up phase*

When the standby command is set, the time required to set the output stage to high impedance and to put the internal circuitry in shutdown mode is called the standby time. This time is used to decrease the gain from its nominal value set by the digital pins G0 and G1 to mute and avoid any pop noise during shutdown. The gain decreases smoothly until the outputs are muted (*Figure 38*).

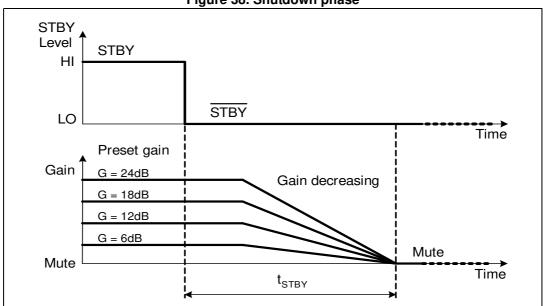


Figure 38. Shutdown phase

DocID026152 Rev 1

4.7 Consumption in shutdown mode

Between the shutdown pin and GND there is an internal 300 k Ω (+-/20%) resistor. This resistor forces the TS2012EI to be in shutdown when the shutdown input is left floating.

However, this resistor also introduces additional shutdown power consumption if the shutdown pin voltage is not at 0 V.

With a 0.4 V shutdown voltage pin for example, you must add 0.4 V/300 k Ω = 1.3 µA typical (0.4 V/240 k Ω = 1.66 µA maximum) for each shutdown pin to the standby current specified in *Table 6* to *Table 8*. Of course, this current will be provided by the external control device for the standby pins.

4.8 Single-ended input configuration

It is possible to use the TS2012EI in a single-ended input configuration. However, input coupling capacitors are mandatory in this configuration. *Figure 39* shows a typical single-ended input application.

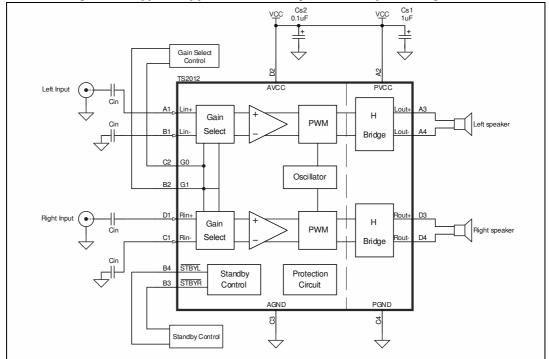


Figure 39. Typical application for single-ended input configuration

