: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

SOP-8

Pin Definition:

1. FB	8. Vss
2. EN	7. Vss
3. Comp	6. SW
4. Vcc	5. SW

General Description

TS2509 is step-down switching regulator with PWM control and with build in internal PMOS. TS2509 provides lowripple power, high efficiency, and excellent transient characteristics. The PWM control circuit can be duty ratio linearly form 0 up to 100%. This converter also contains an error amplifier circuit as well as a soft-start circuit that prevents overshoot at startup.
An enable, over current protect and short circuit protect functions are built inside. When OCP or SCP activated, the operation frequency will be reduced. The internal compensation block is built in to minimum external components and internal PMOS is complete 3A step down switching regulator ideally for portable devices with outstanding features as low current consumption.

Features

- Input Voltage: 3.6V~23V
- Output Voltage: $0.8 \mathrm{~V} \sim \mathrm{Vcc}$
- Duty Ratio: 0\%~100\% PWM Control
- Oscillation Frequency: 500 kHz typ.
- Soft-Start (SS), Current Limit (CL), Enable Function
- Thermal Shutdown Function
- Short Circuit Protect (SCP)
- Internal SW P-Channel MOSFET
- Low ESR output capacitor (MLCC application)

Ordering Information

Part No.	Package	Packing
TS2509CS RL	SOP-8	$2.5 \mathrm{Kpcs} / 13^{\prime \prime}$ Reel

Application

- Simple High-efficiency Step down Regulator
- On-Card Switching Regulators

Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
VCC Pin Voltage	V_{CC}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{SS}}+25$	V
Feedback Pin Voltage	V_{FB}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to V_{CC}	V
ON/OFF Pin Voltage	V_{EN}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Switch Pin Voltage	V_{SW}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Power Dissipation	P_{D}	Internally limited	mW
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{OP}	-20 to +125	${ }^{\circ} \mathrm{C}$
Operating Supply Voltage	V_{OP}	+3.6 to +23	V
Thermal Resistance from Junction to case	θ_{JC}	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance from Junction to ambient	θ_{JA}	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TAIWAN
SEMICONDUCTOR

3A / 500KHz PWM Buck Converter

Electrical Specifications $\left(\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	Conditions		Min	Typ	Max	Units
Feedback Voltage	V_{FB}	$\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~A}$		0.784	0.800	0.816	V
Quiescent Current	I_{q}	$\mathrm{V}_{\mathrm{FB}}=1.2 \mathrm{~V}$ force driver off		--	3	5	mA
Feedback Bias Current	$\mathrm{I}_{\text {fB }}$	$\mathrm{I}_{\text {OUt }}=0.1 \mathrm{~A}$		--	0.1	0.5	uA
Shutdown Supply Current	$\mathrm{I}_{\text {SD }}$	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$		--	2	10	uA
Current limit	Isw			4	--	--	A
Line Regulation	$\Delta \mathrm{V}_{\text {Out }} / \mathrm{V}_{\text {OUT }}$	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V} \sim 23 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=0.2 \mathrm{~A}$		--	0.6	1.2	\%
Load Regulation	$\Delta \mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {OUT }}$	$\mathrm{I}_{\text {OUT }}=0.1$ to 3 A		--	0.2	0.4	\%
Oscillation Frequency	Fosc	SW pin		400	500	600	KHz
EN Pin Logic input threshold voltage	$\mathrm{V}_{\text {SH }}$	High (regulator ON)		2.0	--	--	V
	$\mathrm{V}_{\text {SL }}$	Low (regulator OFF)		--	--	0.8	
EN Pin Input Current	$\mathrm{I}_{\text {SH }}$	$\mathrm{V}_{\text {EN }}=2.5 \mathrm{~V}(\mathrm{ON})$		--	20	--	uA
	$\mathrm{I}_{\text {SL }}$	$\mathrm{V}_{\mathrm{EN}}=0.3 \mathrm{~V}$ (OFF)		--	-10	--	uA
Soft-Start Time	$\mathrm{T}_{\text {ss }}$			0.3	4	8	ms
Internal MOSFET	$\mathrm{R}_{\text {DSoN }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$		--	90	140	Q
		$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$		--	60	90	
Efficiency	$E_{\text {FFI }}$	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	$\mathrm{I}_{\text {OUT }}=2 \mathrm{~A}$	--	91	--	\%
			$\mathrm{I}_{\text {OUT }}=3 \mathrm{~A}$	--	90	--	
Thermal Shutdown Temp.	$\mathrm{T}_{\text {SD }}$			--	125	--	${ }^{\circ} \mathrm{C}$

Block Diagram

Pin Assignment

Name	Description
FB	Feedback pin
EN	H: Normal operation (Step-down) L: Step-down operation stopped (All circuit deactivated)
Comp	Compensation pin
SW	Switch pin. Connect external inductor/diode here
Vcc	IC power supply pin
Vss	Gnd pin

3A / 500KHz PWM Buck Converter

Application Circuit

MLCC

Compensation Capacitor Selection (MLCC)					
VIN	VOUT	L1	R3	$\mathbf{C 7}$	$\mathbf{C 1}$
$7 \sim 23 \mathrm{~V}$	$5.0 / 3.3 / 2.5 \mathrm{~V}$	15 uH	2.2 K	330 pF	1 nF
$7 \sim 20 \mathrm{~V}$	$1.8 / 1.5 \mathrm{~V}$	10 uH	2 K	330 pF	1 nF
$9 \sim 20 \mathrm{~V}$	1.2 V	10 uH	2 K	330 pF	820 pF
$9 \sim 18 \mathrm{~V}$	1.1 V	10 uH	2 K	560 pF	820 pF
$9 \sim 18 \mathrm{~V}$	1.0 V	10 uH	2 K	560 pF	680 pF
$4 \sim 10 \mathrm{~V}$	$3.3 / 2.5 \mathrm{~V}$	15 uH	6.8 K	330 pF	1 nF
$4 \sim 10 \mathrm{~V}$	$1.8 / 1.5 / 1.2 / 1.1 / 1.0 \mathrm{~V}$	10 uH	4.7 K	330 pF	1 nF

EL CAP

VFB $=0.8 \mathrm{~V}$; R2 suggest $0.8 \mathrm{~K} \sim 6.0 \mathrm{~K}$

Compensation Capacitor Selection (EL CAP)					
VIN	VOUT	L1	R3	C7	C1
$7-20 \mathrm{~V}$	$5.0 / 3.3 / 2.5 / 1.8 \mathrm{~V}$	Coil	3.9 K	10 nF	1 nF
$7-20 \mathrm{~V}$	$1.8 / 1.5 \mathrm{~V}$	Coil	2 K	10 nF	1 nF
$5-7 \mathrm{~V}$	$3.3 / 2.5 / 1.8 / 1.5 / 1.2 \mathrm{~V}$	Coil	2 K	10 nF	1 nF
$5-20 \mathrm{~V}$	$3.3 / 2.5 / 1.8 / 1.5 / 1.2 \mathrm{~V}$	SMD	0.82 K	10 nF	1 nF

3A / 500KHz PWM Buck Converter

Function Descriptions

PWM Control

The TS2509 is a pulse-width modulation (PWM) system with a range from 0 to 100% according to different load current. The ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant.

Setting the Output Voltage

TS2509 is adjustable output version. With different output voltage setting, following tables are for external resistor value setting as reference:

$$
\text { VOUT }=0.8 \mathrm{~V} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

(EL CAP) Resistor select for output voltage setting

$\mathrm{V}_{\text {OUT }}$	R 2	R 1
5 V	1.3 K	6.8 K
3.3 V	1.5 K	4.7 K
2.5 V	2.2 K	4.7 K
1.8 V	2 K	2.5 K
1.5 V	2.2 K	2 K
1.2 V	3 K	1.5 K
1 V	10 K	2.5 K

(MLCC) Resistor select for output voltage setting

$\mathrm{V}_{\text {OUT }}$	R 2	R 1
5 V	7.5 K	39 K
3.3 V	15 K	47 K
2.5 V	22 K	47 K
1.8 V	27 K	33 K
1.5 V	30 K	27 K
1.2 V	30 K	15 K
1 V	56 K	13 K

Inductor Selection

For most designs are operates with inductors of $10 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$. The inductor value can be derived from the following table:

$$
L=\frac{\text { VOUT } \times(\text { VIN }- \text { VOUT })}{\text { VIN } \times \Delta I L \times \text { Fosc }}
$$

L1 Recommend Value $\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{l}_{\text {Out }}=3 \mathrm{~A}\right)$				
V out	1.8 V	2.5 V	3.3 V	5 V
L1 Value	$10 \sim 15 \mathrm{uH}$	$10 \sim 15 \mathrm{uH}$	$15 \sim 22 \mathrm{uH}$	$15 \sim 22 \mathrm{uH}$

Large value inductors can lower ripple current and small value inductors will gets higher ripple currents. Choose inductor ripple current approximately 15% of the maximum load current 3 A .

Input Capacitor Selection

(EL CAP)
This capacitor should be located close to the IC using short leads and the voltage rating should be approximately 1.5 times the maximum input voltage. The RMS current rating should be approximately $1 / 2$ the DC load current. A low ESR input capacitor sized for maximum RMS current must be used. A $220 \mu \mathrm{~F}$ low ESR capacitor for most sufficient for applications
(MLCC)
A $22 \mu \mathrm{~F}$ MLCC or two 10 uF MLCC capacitors for most sufficient for applications

TAIWAN
SEMICONDUCTOR

Function Descriptions (Continue)

Output Capacitor Selection

(EL CAP)

The output capacitor is required to maintain the DC output voltage stability. The important capacitor parameters are; the 100 KHz ESR (Equivalent Series Resistance), the RMS ripples current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter, the ESR can be calculated from the following formula.

$$
V_{\text {RIPPLE }}=\Delta I_{L} \times E S R=0.4 \mathrm{~A} \times 110 \mathrm{~m} \Omega=44 \mathrm{mV}
$$

An aluminum electrolytic capacitor's ESR value is related to the capacitance and its voltage rating. In most case, higher voltage electrolytic capacitors have lower ESR values. Most of the time, capacitors with much higher voltage ratings may be needed to provide the low ESR values required for low output ripple voltage. It is recommended to replace this low ESR capacitor by using a $330 \mu \mathrm{~F}$ low ESR values $<110 \mathrm{~m} \Omega$
(MLCC)
A $33 \mu \mathrm{~F}$ MLCC or three 10uF MLCC capacitors is most sufficient for applications.

Ros $_{\text {(ON })}$ Current Limiting

The current limit threshold is setting by the internal circuit.

$\mathrm{V}_{\mathbb{I N}}$	$4.6 \mathrm{~V} \sim 6 \mathrm{~V}$	$6 \mathrm{~V} \sim 10 \mathrm{~V}$	$10 \mathrm{~V} \sim 23 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CL}(\mathrm{M})}$	3 A	3.8 A	4.0 A
$\mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}$	2.5 A	3 A	3 A

Layout Guidance

When laying out the PC board, the following suggestions should be taken to ensure proper operation of the TS2509.

1. The power traces, including the PMOS Drain \& Source trace, the Schottky and the C2 trace should be kept short, direct and wide to allow large current flow.
2. Connect the C 5 to the $\mathrm{V}_{\mathrm{CC}} \& E N$ pins of the TS2509 as closely as possible to get good power filter effect.
3. Keep the switching node, away from the sensitive FB node.
4. Connect ground side of the C2 \& D1 as closely as possible.
5. Connect PMOS Source and R3 as closely as possible.
6. Do not trace signal line under inductor.

Electrical Characteristics Curve

Figure 1. Feedback Voltage vs. Input Voltage

Figure 3. Frequency vs. Input Voltage

Figure 5. Feedback Voltage vs. Temperature

3A / 500KHz PWM Buck Converter

Figure 2.Quiescent Current vs. Input Voltage

Figure 4. Frequency vs. Temperature

Figure 6. Quiescent Current vs. Temperature

Pb RoHS
 COMPLIANCE

Electrical Characteristics Curve

Figure 7. Efficiency

Figure 9.Power On test Wave

Figure 8.Output Ripple ($\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=3 \mathrm{~A}$)

Figure 10.Power On test Wave

3A / 500KHz PWM Buck Converter

Figure 11. Load Transient Response

SOP-8 Mechanical Drawing

Marking Diagram


```
Y = Year Code
\(\mathbf{M}=\) Month Code
( \(\mathbf{A}=\) Jan, \(\mathbf{B}=\) Feb, \(\mathbf{C}=\) Mar, \(\mathbf{D}=A p l, \mathbf{E}=\) May, \(\mathbf{F}=\) Jun, \(\mathbf{G}=\) Jul, \(\mathbf{H}=\) Aug, \(\mathbf{I}=\) Sep, \(\mathbf{J}=\) Oct, \(\mathbf{K}=\) Nov, \(\mathbf{L}=\mathrm{Dec}\) )
L = Lot Code
```

COMPLIANCE

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

