

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SOP-8

DIP-8

Pin Definition:

1. SC 5. Comp 2. SE 6. Vcc 3. CT 7. lpk 4. Gnd 8. Vdriver

General Description

TS34063 is a monolithic switching regulator and subsystem intended for use as DC to DC converter. It contains an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active peak current limit circuit, drive and a high current output switch. The TS34063 is specifically designed to be incorporated in step-up, step-down and voltage inverting converter applications. TS34063 is offered in SOP-8 and DIP-8 package

Features

- Power forward control circuit
- Operating voltage from 3V to 40V
- Low standby current
- Current limit adjustable
- Output switch current up to 1.5A
- Variable oscillator frequency up to 100kHz(max.)
- Output voltage adjustable

Pin Description

Name	Description
SC	Switch Collector
SE	Switch Emitter
CT	Timing Capacitor
GND	Ground
COMP.	Comparator Inverting Input
V _{CC}	V _{CC} Collector
I_{PK}	IPK Sense
V_{DRIVER}	Driver

Applications

- Charger
- xD-ROM, xDSL products
- DC to DC converter

Ordering Information

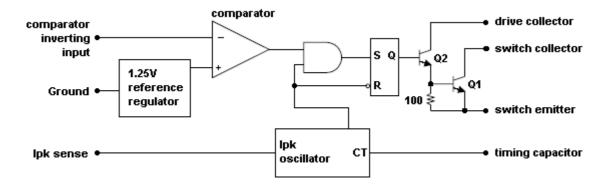
Part No.	Package	Packing
TS34063CD C3	DIP-8	50pcs / Tube
TS34063CS RL	SOP-8	2.5Kpcs / 13" Reel

Absolute Maximum Rating

Parameter	Symbol	Maximum	Unit	
Supply Voltage		V _{CC}	40	V
Comparator Input Voltage Range	Comparator Input Voltage Range		- 0.3 ~ 40	V
Switch Collector Output Voltage		$V_{C(SW)}$	40	V
Switch Emitter Voltage		V _{E(SW)}	40	V
Switch Collector to Emitter Voltage		V _{CE(SW)}	40	V
Driver Collector Voltage		V _{C(DRIVER)}	40	V
Driver Collector Current (note 1)		I _{C(DRIVER)}	100	mA
Output Switching Current		I _{SW}	1.5	Α
Device Dissipation	DIP-8	Б	1.0	14/
Power Dissipation	SOP-8	─ P _D	0.5	W
Operating Ambient Temperature Range		T _{OPR}	-40 ~ +85	°C
Junction Temperature Range		T _J	0 ~ +125	°C
Storage Temperature Range		T _{STG}	-65 ~ +150	°C

Note: Maximum package power dissipation limits must be observed

Electrical Characteristics (V_{CC} =5V, Ta =25°C; unless otherwise noted.)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Oscillator (OSC)						
Frequency	Fosc	$C_T = 1nF$, Vpin5= 0V	24	33	42	KHz
Charge Current	I _{CHARGE}	V _{CC} = 5V ~ 40V	24	30	42	uA
Discharge Current	I _{DISCHARGE}	V _{CC} = 5V ~ 40V	140	200	260	uA
Discharge to Charge current ratio	I _{DISCHARGE} / I _{CHARGE}	Pin7 to V _{CC}	5.2	6.5	7.5	
Current Limit Sense Voltage	V _{IPK(SENSE)}	I _{DISCHARGE} = I _{CHARGE}	250		350	mV
Output switch (note1)						
Saturation Voltage	V _{CE(SAT)}	I _{SW} = 1A, pin1, 8 connected		1.0	1.3	V
Saturation Voltage	V _{CE(SAT)}	I _{SW} = 1A, Id=50mA		0.45	0.7	V
DC current gain	H _{FE}	$I_{SW} = 1A, V_{CE} = 0.5V$	50	75		
Collector off-state current	I _{C(OFF)}	V _{CE} = 40V		0.01	100	uA
Comparator						
Threshold Voltage	V_{REF}		1.225	1.25	1.275	V
Line regulation	REG _{LINE}	V _{CC} = 3V ~ 40V			6	mV
Total device						
Supply Current	Icc	V_{CC} = 5V ~ 40V, C_T = 1nF, pin7= V_{CC} , pin5> V_{TH} , pin2=Gnd, remaining pins open		3	5	mA

Notes1: Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible

Note 2: If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (<=300mA) and high driver currents (>=30mA), it may take up to 2uS for it to come out of saturation. This condition will shorten the off time at frequencies >= 30KHz, and is magnified at high temperature. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-darlington configuration is used, the following output drive condition is recommended: Forced Bata of output switch: Ic output / (Ic driver - 7mA*) >= 10

* The 100ohm resistor in the emitter of the driver divide requires about 7mA before the output switch conducts.

Block Diagram

Electrical Characteristics Curve

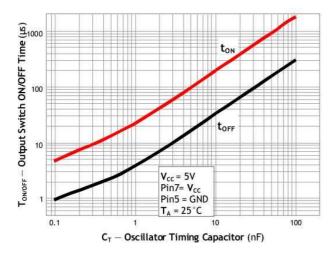


Fig 1. Output Switch ON-OFF TIME vs.
Oscillator Timing Capacitor

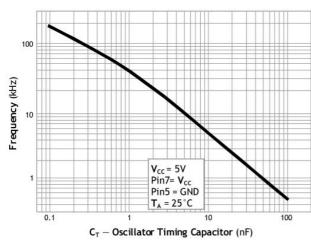


Fig 3. Oscillator Frequency vs. Timing Capacitor

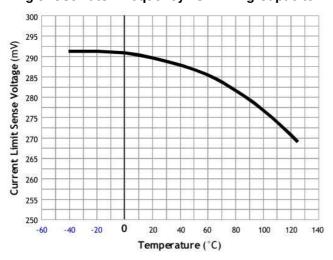


Fig 5. Current Limit Sense Voltage vs. Temperature

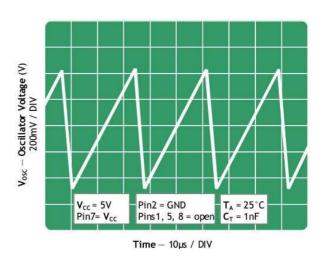


Fig 2. Timing Capacitor Wave Form

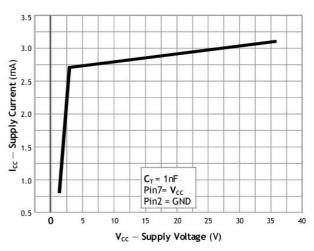
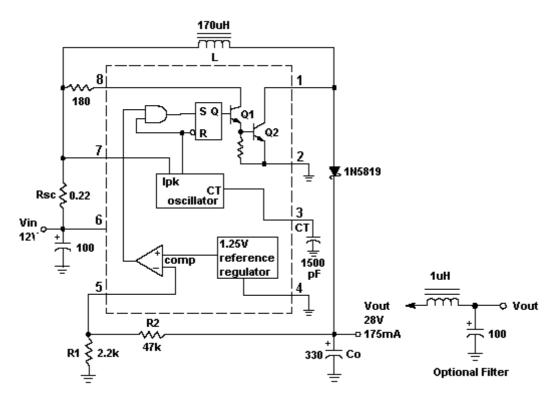



Fig 4. Standby Supply Current vs. Supply Voltage

Typical Application Circuit

Test	Conditions	Results
Line Regulation	V _{IN} = 8V~16V, lo= 175mA	$30mV = \pm 0.05\%$
Load Regulation	$V_{IN} = 12V$, $Io = 75mA$ to $175mA$	$10mV = \pm 0.017\%$
Output Ripple	V _{IN} =12V, Io= 175mA	400mVpp
Efficiency	V _{IN} =12V, Io= 175mA	87.7%
Output Ripple with Optional Filter	V _{IN} =12V, Io= 175mA	40mVpp

Figure 7. Step Up Converter

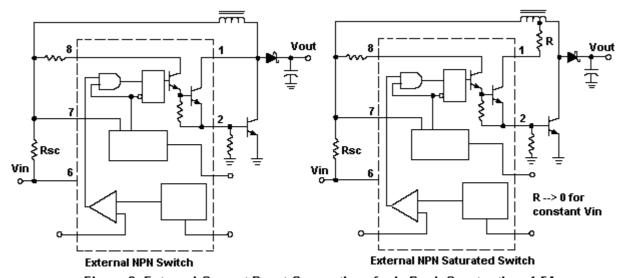
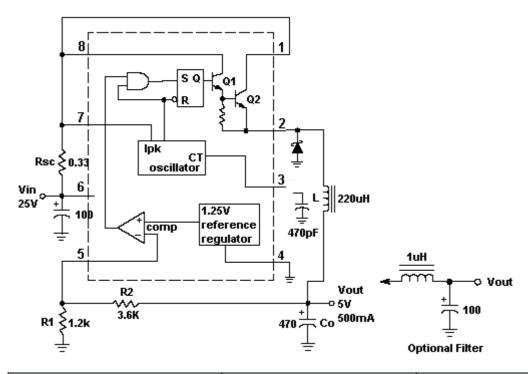



Figure 8. External Current Boost Connections for Ic Peak Greater than 1.5A

Typical Application Circuit (Continue)

Test	Conditions	Results
Line Regulation	V _{IN} = 15V~25V, Io= 500mA	$12mV = \pm 12\%$
Load Regulation	$V_{IN} = 25V$, $Io = 50mA$ to $500mA$	$3mV = \pm 0.03\%$
Output Ripple	V _{IN} =25V, Io= 500mA	120mVpp
Short Circuit Current	V_{IN} =25V, R_L = 0.1m Ω	1.1A
Efficiency	V _{IN} =25V, Io= 500mA	83.7%
Output Ripple with Optional Filter	V _{IN} =25V, Io= 500mA	40mVpp

Figure 9. Step Down Converter

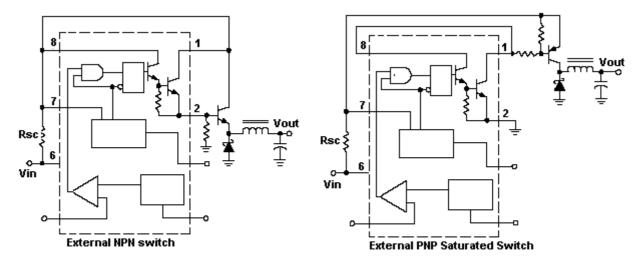
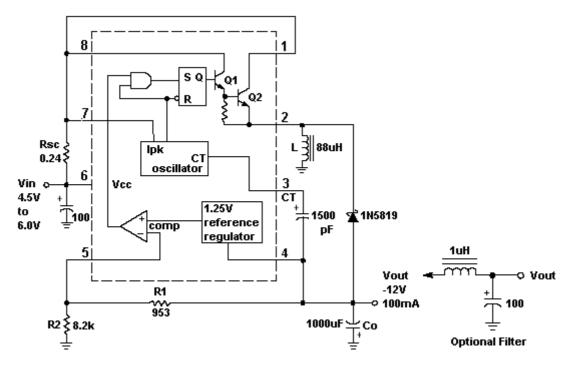



Figure 10. External Current Boost Connections for Ic Peak Greater than 1.5A

Typical Application Circuit (Continue)

Test	Conditions	Results
Line Regulation	V _{IN} = 4.5V~6V, lo= 100mA	$3mV = \pm 120.012\%$
Load Regulation	$V_{IN} = 5V$, $Io = 10mA$ to $100mA$	$0.022V = \pm 0.09\%$
Output Ripple	V _{IN} =5V, Io= 100mA	500mVpp
Short Circuit Current	V_{IN} =5V, R_L = 0.1 Ω	910mA
Efficiency	V _{IN} =5V, Io= 100mA	62.2%
Output Ripple with Optional Filter	V _{IN} =5V, Io= 100mA	70mVpp

Figure 11. Voltage Inverting Converter

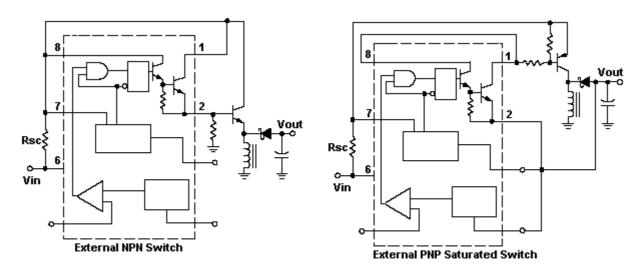


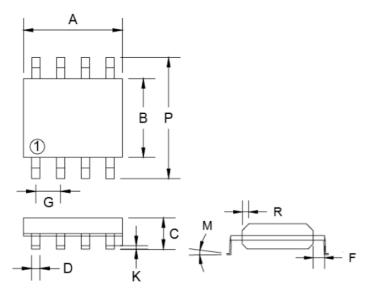
Figure 12. External Current Boost Connections for Ic Peak Greater than 1.5A

Design Formula Table

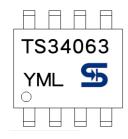
Test	Step Up	Step Down	Voltage Inverting
<u>ton</u>	Vout + Vf - Vin(min)	Vout + Vf	<i>Vout</i> + <i>Vf</i>
toff	$Vcc(\min) - Vsat$	Vcc – Vsat – Vout	Vcc – Vsat
(ton+ toff)	$\frac{1}{f \min}$	$\frac{1}{f \min}$	$\frac{1}{f \min}$
	J IIIII	J IIIII	J IIIII
CT	4.0 x 10 ⁻⁵ ton	4.0 x 10 ⁻⁵ ton	4.0 x 10 ^{−5} ton
lpk(switch)	$2lout(max)\left(\frac{ton}{toff}+1\right)$	2lout(max)	$2lout(max)\left(\frac{ton}{toff}+1\right)$
Rsc	$\left(\frac{0.3}{Ipk(switch)}\right)$	$\left(\frac{0.3}{Ipk(switch)}\right)$	$\left(\frac{0.3}{Ipk(switch)}\right)$
L(min)	$\left(\frac{Vin(\min) - Vsat}{Ipk(switch)}\right) * ton(\max)$	$\left(\frac{Vin(\min) - Vsat - Vout}{Ipk(switch)}\right)^* ton(\max)$	$\left(\frac{Vin(\min) - Vsat}{Ipk(switch)}\right) * ton(\max)$
Со	$\left(9\frac{Iout*ton}{Vripple(pp)}\right)$	$\left(\frac{Ipk(switch)(ton + toff)}{8Vripple(pp)}\right)$	$\left(9\frac{Iout*ton}{Vripple(pp)}\right)$

Terms and Definitions

- Vsat = Saturation Voltage of the output switch.
- Vf = Forward Voltage drop of the rectifier.


The following power supply characteristics must be chosen:

- Vin= Normal input voltage
- Vout: Desied Output voltage, |Vout| =1.25 (1+R2 / R1)
- lout : Desired output current.
- fmin: Minimum desired output switching frequency at the selected values for Vin and Io.
- Vripple(p-p): Desired peak-to-peak output ripple voltage. in practice, the calculated capacitor value will need
 to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to
 a low value since it will directly affect the line and load regulation.

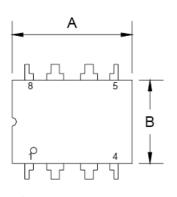


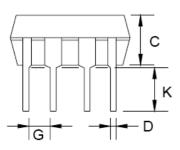
SOP-8 Mechanical Drawing

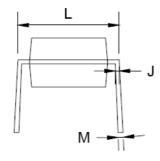
	SOP-8 DIMENSION					
DIM	MILLIMETERS		INCHES			
DIIVI	MIN	MAX	MIN	MAX.		
Α	4.80	5.00	0.189	0.196		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27BSC		0.05	BSC		
K	0.10	0.25	0.004	0.009		
М	0∘	7º	0º	7º		
Р	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

Marking Diagram

Y = Year Code


M = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)


L = Lot Code



DIP-8 Mechanical Drawing

	DIP-8 DIMENSION				
DIM	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.07	9.32	0.357	0.367	
В	6.22	6.48	0.245	0.255	
С	3.18	4.45	0.125	0.135	
D	0.35	0.55	0.019	0.020	
G	2.54 (typ)		0.10	(typ)	
J	0.29	0.31	0.011	0.012	
K	3.25	3.35	0.128	0.132	
L	7.75	8.00	0.305	0.315	
М	-	10°	1	10°	

Marking Diagram

Y = Year Code

M = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)

L = Lot Code

TS34063 Dc to Dc Converter Controller

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.