imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Microprocessor Reset Circuit

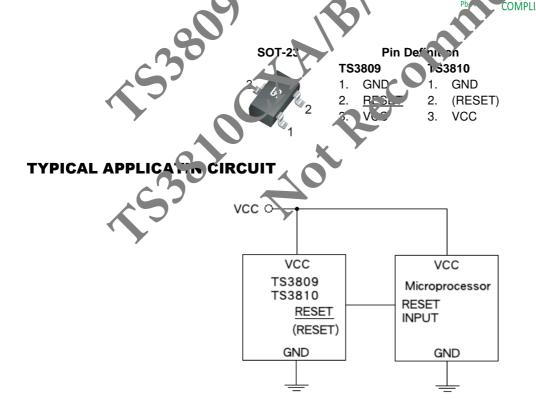
GENERAL DESCRIPTION

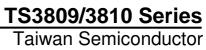
The TS3809/3810 series are used for microprocessor (μ P) supervisory circuits to monitor the power supplies in μ P and digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V, +3.3V, +3.0V, +2.5V powered circuits.

These circuits perform a single function: they assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 200ms after V_{CC} has risen above the reset threshold. Reset thresholds suitable for operation with a variety of supply voltages are available. TS3809/3810 series have push pull outputs. TS3809 series has an active low RESET output, while the TS3810 has an active ligh RESET output. The reset comparator is designed to ignore fast transients on V_{CC} , and the cutputs are guaranteed to be in the correct logic state for V_{CC} down to 1.0V. Low supply current makes TS300012810 series ideal for use in portable equipment.

FEATURES

- High Accurate ±2%
- Precision monitoring of +3V, +3.3V, and +5V
 Power supply voltage
- Fully specified over temperature
- Available in three output configurations
- Push-Pull <u>RESET low</u> output (TS3809)
- Push-Pull (RES FT) high output (TS3810)
- 200ms tvo. Lower-on reset puise width
- 25µs subply current
- Guaranteed reset valid to V ~=+1V
- lowe supply transient immunity


APPLICATION


Battery-operal d systems and controllers

oHS

HALOGEN

- Intelligent instruments
- Critical µ, and µC power monitoring
- Ponc blc / Battery powers 1 equipment
- Automotive

ABSOLUTE MAXIMUM RATINGS			
PARAMETER	SYMBOL	LIMIT	UNIT
Terminal Voltage (with respect to GND)	V _{CC}	GND - 0.3 to GND +6.5	V
RESET & (RESET) push-pull	V _{RESET}	GND - 0.3 to V _{CC} +0.3	V
Input Current, V _{CC}	I _{cc}	20	mA
Output Current, <u>RESET</u> , (RESET)	Ι _Ο	5	mA
Power Dissipation	P _D	$(T_J - T_A)/R_{\theta JA}$	mW
Operating Junction Temperature Range	T _{J.OPR}	-40 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C
Lead Soldering Temperature (260°C)	T _{LEAD}	10	S

THERMAL PERFORMANCE			
PARAMETER	SYMBOL	I TAXIMUM	UNIT
Thermal Resistance from Junction to Case	R _{eJC}	110	⁰C/W
Thermal Resistance from Junction to Ambient (Note 1)	R _{eJA}	250	°C/W

ELECTRICAL CHARACTERISTICS (V _{CC} = 5V, T _A = 25°C unless otherwise noted)						
PARAMETER	CONDITIONS	ST MB JL	MIN	· (7)	MAX	UNIT
Input Supply Voltage	T _A =-40°C~+р. С	V _{cc}	1.0	<u> </u>	6	V
Supply Current	V _{CC} = / _{TH} + 1V	I _{cc}		25	35	μA
	T 2209/3810CXA		54	4.63	4.71	
Q	T\$3809/3810CXB		4.29	4.38	4.46	
	TS3809/3810CXv5		3.92	4.00	4.08	
Reset Threshold	TS3809/30.00XD	₩ун	3.02	3.08	3.15	V
	TS3809/3810CXE		2.87	2.93	3.00	
*	T `3⊾ ๅ9/3810CXF		2.57	2.63	2.69	
	53809/3810CXG		2.20	2.25	2.30	
Reset Threshold Temperature Coefficient	T _A =0~+85°C	V _{THT}		50		ppm/°C
Set-up Time	$V_{\rm CC} = 0 \sim (V_{\rm TF} - 100 {\rm mV})$	T _{SET}	1			μs
V _{CC} to Reset Dela	$V_{CC} = V_{TH} \sim (V_{TH} - 100 mV)$	T _{RD}		20		μs
Reset Active Timeout Period	T _A =0~+85°C	T _{DELAY}	140	200	260	ms
<u>RESET</u> Output (TS3809) Voltage Low		V _{OL}			0.3	v
<u>RESET</u> Output (TS3809) Voltage High	$V_{CC} > V_{TH(MAX)},$ $I_{SOURCE} = 500 \mu A$	V _{OH}	0.8 V _{CC}			v
(RESET) Output (TS3810) Voltage Low	$V_{CC} > V_{TH(MAX)}, I_{SINK} = 1.2mA$	V _{OL}			0.3	V

TAIWAN SEMICONDUCTOR

9h

TS3809/3810 Series

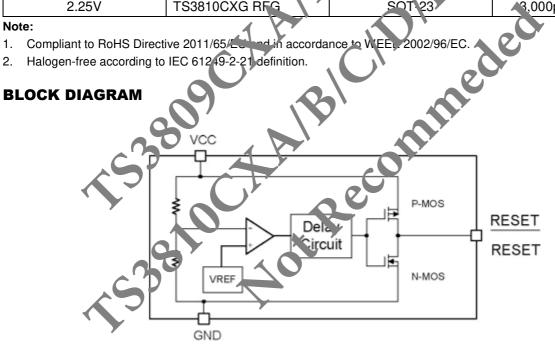
Taiwan Semiconductor

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V$, $T_A = 25^{\circ}C$ unless otherwise noted)						
PARAMETER	CONDITIONS	SYMBOL	MIN	ΤΥΡ	MAX	UNIT
(RESET) Output (TS3810)	$1.8V < V_{CC} < V_{TH(MAX)},$					
Voltage High	I _{SOURCE} =500μA	V _{OH}	0.8 V _{CC}			v
	1.2V <v<sub>CC<1.8V,</v<sub>					
	I _{SOURCE} =150μA					
Hysteresis at V_{CC}	Input Voltage	V _{HVS}		40		mV

Note :

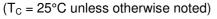
1. R_{eJA} is measured the PCB copper area of approximately 1in² (Multi-layer). Needs to connect to V_{SS} pin.

en needs connect to Vas pin (Connect to Vas pi


ORDERING INFORMATION

RESET VOLTAGE	PART NO.	PACKAGE	PACKING
4.63V	TS3809CXA RFG	SOT-23	3,000pcs / 7" Reel
4.38V	TS3809CXB RFG	SOT-23	3,000pcs / 7" Reel
4.00V	TS3809CXC RFG	SOT-23	3,000pcs / 7" Reel
3.08V	TS3809CXD RFG	SOT-23	3,000pcs / 7" Reel
2.93V	TS3809CXE RFG	SOT-23	3,000pcs / 7" Reel
2.63V	TS3809CXF RFG	SOT-23	3,000pcs / 7" Reel
2.25V	TS3809CXG RFG	SOT-23	3,000pcs, 7"Reel
4.63V	TS3810CXA RFG	SO7 23	3.000ur / 7" Reel
4.38V	TS3810CXB RFG	SOT-23	3,0,00pcs / 7" Reel
4.00V	TS3810CXC RFG	SOT-23	3,000pcs / 7" Reel
3.08V	TS3810CXD RFG	SOT-23	3,000pcs / 7" Reel
2.93V	TS3810CXE RFG	SOT-23	3,000pcs / 7" Reel
2.63V	TS3810CXF RFG	SOT 13	3,000pcs / 7" Reel
2.25V	TS3810CXG RFG	SOT 23	3,000pcs / 7" Reel

Note:


2002/96/EC. 1. Compliant to RoHS Directive 2011/65/ n accordance to

Halogen-free according to IEC 61249-2-21 definition. 2.

CHARACTERISTICS CURVES

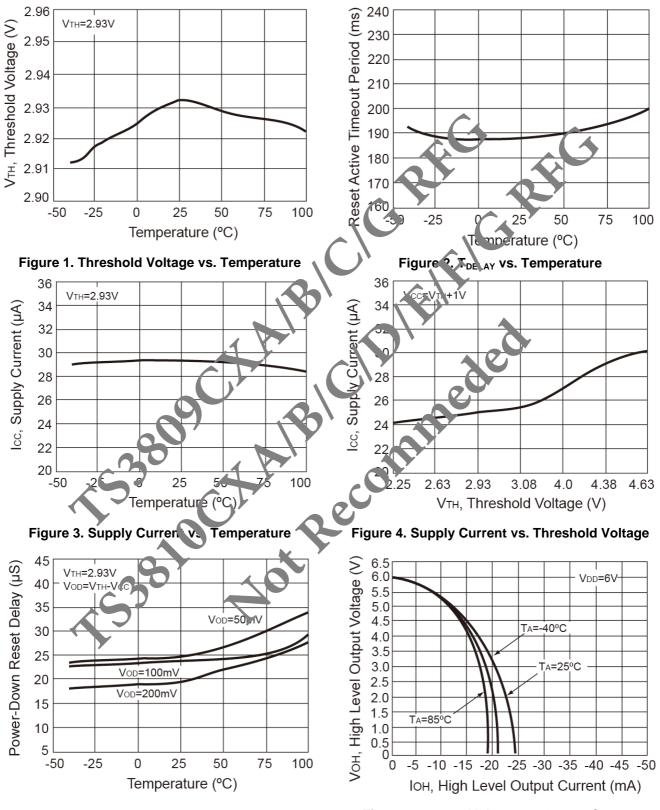


Figure 5. Power-Down T_{DELAY} vs. Temperature

Figure 6. Output Voltage vs. Output Current

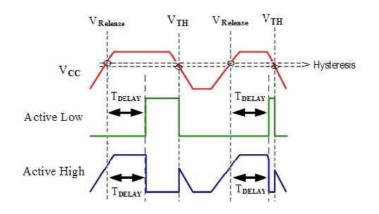
APPLICATION INFORMATION

Negative-Going V_{CC} transients in addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, the TS3809/3810 are relatively immune to short-duration negative-going V_{CC} transients (glitches).

The TS3809/3810 does not generate a reset pulse. The graph was generated using a negative going pulse applied to V_{CC} , starting 0.5V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the maximum pulse width a negative going V_{CC} transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 100mV below the reset threshold and lasts 20µS or less will not cause a reset pulse. A 0.1µF by ass capacitor mounted as close as possible to the V_{CC} pin provides additional transient immunity.

FUNCTION DESCRIPTION

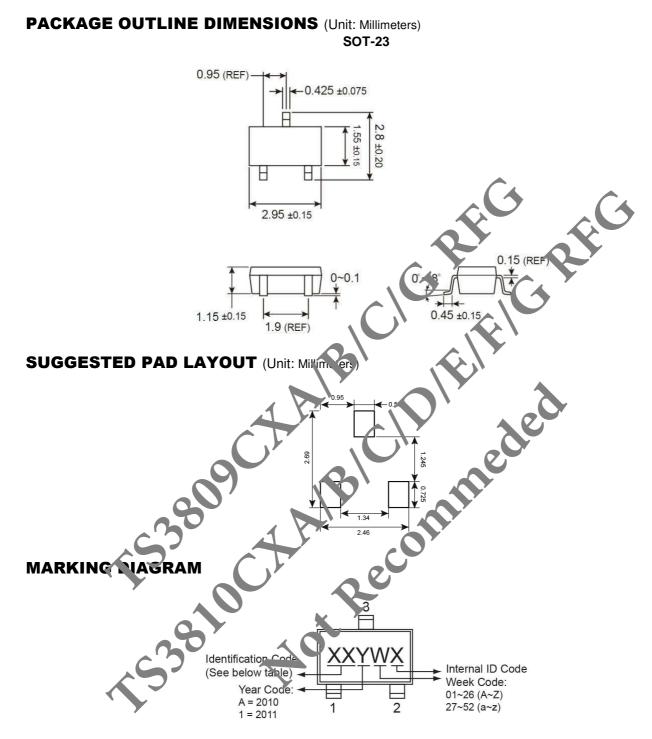
A microprocessor's reset input starts the μ P in a known state. The TS3809/3810 asset to prevent codeexecution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping is asserted for at east 140ms after V_{CC} has risen above the reset threshold. The TS3809/3810 have a pust-pull output stage.


ENSURING A VALID RESET OUTPUT DOWN TO THE

RESET is guaranteed to be a logic low for $V_{CC} > 1.0V$. Once V_{CC} exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period, there is this interval RESET goes high. If a crownout condition occurs (V_{CC} dips below the reset threshold), RESET goes low. Any time V_{CC} goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The internal timer starts after V_{CC} returns above the reset threshold, and RESET remains low for the reset timeout period. When V_{CC} folls below 1V, the Sod09/3810 reset output no longer sinks current - it becomes an open sincuit. Therefore, bigh impedance CMOS logic input connected to reset can drift to undetermined voltage. This present no problem in most applications since most μ P and other circuitry is inoperative with V_{CC} below 1V. However, in applications where reset must be valid down to 0V, adding a pull down resistor to reset causes and stray leakage currents to flow to ground, nolding reset low (Figure 2.) R1's value is not critical; 100K is large enough not to load reset and small enough to pull RESET to ground. For the TS3809/3810 if reset is required to remain valid for $V_{CC} < 1V$.

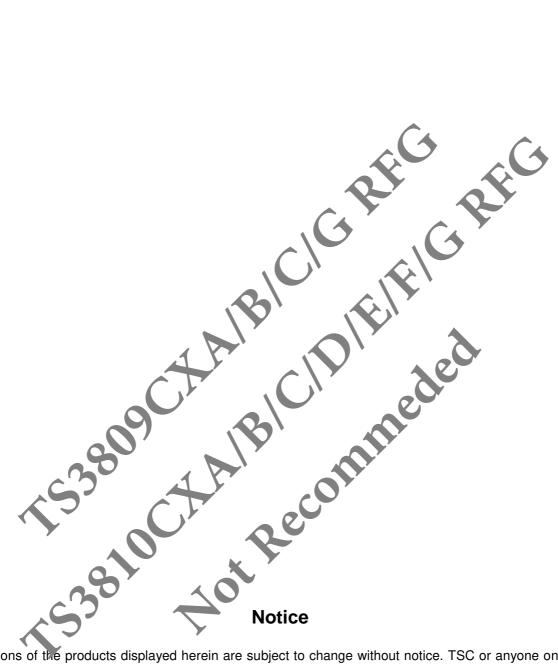
BENEFITS OF HIGHLY ACCURATE RESET THRESH JLD

Most μ P supervisor ICs has reset threshold vor ages between 5% and 10% below the value of nominal supply voltages. This ensures a neset will not occur within 5% of the nominal supply, but will occur when the supply is 10% below nominal. When using ICs rated at only the nominal supply ±5%, this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset many or may not be asserted.


TIMMING DIAGRAM

6

Taiwan Semiconductor



PART NO.	IDENTIFICATION CODE	PART NO.	IDENTIFICATION CODE
TS3809CXA	CA	TS3810CXA	СН
TS3809CXB	СВ	TS3810CXB	CI
TS3809CXC	CC	TS3810CXC	CJ
TS3809CXD	CD	TS3810CXD	СК
TS3809CXE	CE	TS3810CXE	CL
TS3809CXF	CF	TS3810CXF	СМ
TS3809CXG	CG	TS3810CXG	CN

Taiwan Semiconductor

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.