imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TS4621B

High-performance class-G stereo headphone amplifier with I²C volume control

Features

- Power supply range: 2.3 V to 4.8 V
- 0.6 mA/channel quiescent current
- 2.1 mA current consumption with 100 µW/channel (10 dB crest factor)
- 0.006% typical THD+N at 1 kHz
- 100 dB typical PSRR at 217 Hz
- 100 dB of SNR A-weighted at G = 0 dB
- Zero pop and click
- I²C interface for volume control
- Digital volume control range from -60 dB to +4 dB
- Independent right and left channel shutdown control
- Integrated high-efficiency step-down converter
- Low software standby current: 5 µA max
- Output-coupling capacitors removed
- Thermal shutdown
- Flip-chip package: 1.65 mm x 1.65 mm, 400 µm pitch, 16 bumps

Applications

- Cellular phones, smart phones
- Mobile internet devices
- PMP/MP3 players

Description

The TS4621B is a class-G stereo headphone driver dedicated to high audio performance, high power efficiency and space-constrained applications.

It is based on the core technology of a low power dissipation amplifier combined with a highefficiency step-down DC/DC converter for supplying this amplifier.

When powered by a battery, the internal stepdown DC/DC converter generates the appropriate voltage to the amplifier depending on the amplitude of the audio signal to supply the headsets. It achieves a total 2.1 mA current consumption at 100 μ W output power (10 dB crest factor).

THD+N is 0.02 % maximum at 1 kHz and PSRR is 100 dB at 217 Hz, which ensures a high audio quality of the device in a wide range of environments.

The traditionally bulky output coupling capacitors can be removed.

A dedicated common-mode sense pin removes parasitic ground noise.

The TS4621B is designed to be used with an output serial resistor. It ensures unconditional stability over a wide range of capacitive loads.

The TS4621B is packaged in a tiny 16-bump flip-chip package with a pitch of 400 $\mu m.$

Contents

1	Abso	lute max	kimum ratings and operating conditions		
2	Typical application schematics				
3	Electi	rical cha	aracteristics		
4	Appli	cation i	nformation		
	4.1	I ² C bus	interface		
		4.1.1	I ² C bus operation		
		4.1.2	Control register CR1 - address 1		
		4.1.3	Control register CR2 - address 2		
		4.1.4	Control register CR3 - address 3		
		4.1.5	Summary of output impedance		
	4.2	Wake-u	p and standby time definition		
	4.3	Overvie	w of the class-G, 2-level headphone amplifier		
	4.4	Externa	l component selection		
		4.4.1	Step-down inductor selection (L1)		
		4.4.2	Step-down output capacitor selection (Ct)		
		4.4.3	Full capacitive inverter capacitors selection (C12 and Css)		
		4.4.4	Power supply decoupling capacitor selection (Cs)		
		4.4.5	Input coupling capacitor selection (Cin)		
		4.4.6	Low-pass output filter (Rout and Cout) and IEC 61000-4-2 ESD protection		
		4.4.7	Integrated input low-pass filter		
	4.5	Single-e	ended input configuration		
		4.5.1	Layout recommendations for single-ended operation		
	4.6	Startup	phase		
		4.6.1	Auto zero technology		
		4.6.2	Input impedance		
	4.7	Layout r	ecommendations 40		
		4.7.1	Common mode sense layout		
	4.8	Demons	stration board		
5	Packa	age info	rmation		

Doc ID 022194 Rev 2

57

6	Ordering information	5
7	Revision history	7

List of figures

Figure 1.	Typical application schematics for the TS4621B	8
Figure 2.	SCL and SDA timing diagram1	2
Figure 3.	Start and stop condition timing diagram 1	2
Figure 4.	Current consumption vs. power supply voltage 1	3
Figure 5.	Standby current consumption vs. power supply voltage	3
Figure 6.	Maximum output power vs. loadin-phase 1	3
Figure 7.	Maximum output power vs. loadout-of-phase 1	3
Figure 8.	Maximum output power vs. power supply voltage, RL = 16 Ω	3
Figure 9.	Maximum output power vs. power supply voltage, RL = $32 \Omega \dots \dots \dots \dots 1$	3
Figure 10.	Maximum output power vs. power supply voltage, $RL = 47 \Omega \dots 1$	4
Figure 11.	Maximum output voltage vs. power supply voltage, in-phase	4
Figure 12.	Maximum output voltage vs. power supply voltage, out-of-phase	4
Figure 13.	Current consumption vs. total output power, $RL = 16 \Omega$	4
Figure 14.	Current consumption vs. total output power, $RL = 32 \Omega$	4
Figure 15.	Current consumption vs. total output power, $RL = 47 \Omega$	4
Figure 16.	Current consumption vs. total output power	5
Figure 17.	Power dissipation vs. total output power 1	5
Figure 18.	Output impedance vs. frequency in HiZ mode 1	5
Figure 19.	Differential input impedance vs. gain 1	5
Figure 20.	THD+N vs. output power RL = 16 Ω , in-phase, V _{CC} = 2.5 V	5
Figure 21.	THD+N vs. output power RL = 16 Ω , out-of-phase, V _{CC} = 2.5 V	5
Figure 22.	THD+N vs. output power RL = 16 Ω , in-phase, V _{CC} = 3.6 V	6
Figure 23.	THD+N vs. output power RL = 16 Ω , out-of-phase, V _{CC} = 3.6 V	6
Figure 24.	THD+N vs. output power RL = 16 Ω , in-phase, V _{CC} = 4.8 V	6
Figure 25.	THD+N vs. output power RL = 16 Ω , out-of-phase, V _{CC} = 4.8 V	6
Figure 26.	THD+N vs. output power RL = 32 Ω , in-phase, V _{CC} = 2.5 V	6
Figure 27.	THD+N vs. output power RL = 32 Ω , out-of-phase, V _{CC} = 2.5 V	6
Figure 28.	THD+N vs. output power RL = 32 Ω , in-phase, V _{CC} = 3.6 V	7
Figure 29.	THD+N vs. output power RL = 32 Ω , out-of-phase, V _{CC} = 3.6 V	7
Figure 30.	THD+N vs. output power RL = 32 Ω , in-phase, V _{CC} = 4.8 V	7
Figure 31.	THD+N vs. output power RL = 32 Ω , out-of-phase, V _{CC} = 4.8 V	7
Figure 32.	THD+N vs. output power RL = 47 Ω , in-phase, V _{CC} = 2.5 V	7
Figure 33.	THD+N vs. output power RL = 47 Ω , out-of-phase, V _{CC} = 2.5 V	7
Figure 34.	THD+N vs. output power RL = 47 Ω , in-phase, V _{CC} = 3.6 V	8
Figure 35.	THD+N vs. output power RL = 47 Ω , out-of-phase, V _{CC} = 3.6 V	8
Figure 36.	THD+N vs. output power RL = 47 Ω , in-phase, V _{CC} = 4.8 V	8
Figure 37.	THD+N vs. output power RL = 47 Ω , out-of-phase, V _{CC} = 4.8 V	8
Figure 38.	THD+N vs. frequency RL = 16 Ω , in-phase, V _{CC} = 2.5 V	8
Figure 39.	THD+N vs. frequency RL = 16 Ω , out-of-phase, V _{CC} = 2.5 V	8
Figure 40.	THD+N vs. frequency RL = 16 Ω , in-phase, V _{CC} = 3.6 V	9
Figure 41.	THD+N vs. frequency RL = 16 Ω , out-of-phase, V _{CC} = 3.6 V	9
Figure 42.	THD+N vs. frequency RL = 16 Ω, in-phase, V_{CC} = 4.8 V	9
Figure 43.	THD+N vs. frequency RL = 16 Ω, out-of-phase, V_{CC} = 4.8 V	9
⊢igure 44.	I HD+N vs. trequency HL = 32 Ω, in-phase, V_{CC} = 2.5 V	9
Figure 45.	THD+N vs. trequency $HL = 32 \Omega$, out-of-phase, $V_{CC} = 2.5 V$	9
⊢igure 46.	$I H D + N$ vs. trequency $RL = 32 \Omega$, in-phase, $V_{CC} = 3.6 V$	U
⊢igure 47.	$I H D + N$ vs. trequency $H L = 32 \Omega$, out-ot-phase, $V_{CC} = 3.6 V$	U
⊢igure 48.	I HD+N vs. frequency HL = 32 Ω , in-phase, V _{CC} = 4.8 V	υ

Figure 49.	THD+N vs. frequency RL = 32 Ω , out-of-phase, V _{CC} = 4.8 V	20
Figure 50.	THD+N vs. frequency RL = 47 Ω , in-phase, V _{CC} = 2.5 V	20
Figure 51.	THD+N vs. frequency RL = 47 Ω , out-of-phase, V _{CC} = 2.5 V	20
Figure 52.	THD+N vs. frequency RL = 47 Ω , in-phase, V _{CC} = 3.6 V	21
Figure 53.	THD+N vs. frequency RL = 47 Ω , out-of-phase, V _{CC} = 3.6 V	21
Figure 54.	THD+N vs. frequency RL = 47 Ω , in-phase, V _{CC} = 4.8 V	21
Figure 55.	THD+N vs. frequency RL = 47 Ω , out-of-phase, V _{CC} = 4.8 V	21
Figure 56.	THD+N vs. frequency RL = 10 k Ω	21
Figure 57.	THD+N vs. frequency RL = 600Ω	21
Figure 58.	THD+N vs. output voltage RL = 10 k Ω	22
Figure 59.	THD+N vs. output voltage RL = 600 Ω	22
Figure 60.	THD+N vs. input voltage, HiZ left and right	22
Figure 61.	CMRR vs. frequency.	22
Figure 62.	PSRR vs. frequency $V_{CC} = 2.5 V$	22
Figure 63.	PSRR vs. frequency $V_{CC} = 3.6 V$	22
Figure 64.	PSRR vs. frequency $V_{CC} = 4.8 V$	23
Figure 65.	Output signal spectrum	23
Figure 66.	Crosstalk vs. frequency RL = 16Ω	23
Figure 67.	Crosstalk vs. frequency $RL = 32 \Omega$	23
Figure 68.	Crosstalk vs. frequency $RL = 47 \Omega$	23
Figure 69.	Crosstalk vs. frequency $RL = 10 \text{ k}\Omega$	23
Figure 70.	Wake-up time	24
Figure 71.	Shutdown time	24
Figure 72.	I ² C write operations.	26
Figure 73.	I ² C read operations1	27
Figure 74.	Flowchart for short-circuit detection	27
Figure 75.	TS4621B architecture	31
Figure 76.	Efficiency comparison.	32
Figure 77.	Class-G operating with a music sample	32
Figure 78.	Typical application schematic with IEC 61000-4-2 ESD protection	36
Figure 79.	Single-ended input configuration1	37
Figure 80.	Single-ended input configuration 2	37
Figure 81.	Incorrect ground connection for single-ended option	38
Figure 82.	Correct ground connection for single-ended option	39
Figure 83.	Common mode sense layout example	41
Figure 84.	Demonstration board schematic	42
Figure 85.	Copper lavers	43
Figure 86.	Copper laver and overlay lavers	43
Figure 87.	TS4621B footprint recommendation	44
Figure 88.	Pinout	44
Figure 89.	Marking (top view)	45
Figure 90.	Flip-chip - 16 bumps	45
Figure 91.	Device orientation in tape pocket	45

1

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾ during 1ms.	5.5	V
V_{in+}, V_{in-}	Input voltage referred to ground	+/- 1.2	V
T _{stg}	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature ⁽²⁾	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽³⁾	200	°C/W
Pd	Power dissipation	Internally limited ⁽⁴⁾	
	Human body model (HBM) ⁽⁵⁾ All pins VOUTR, VOUTL vs. AGND	2 4	kV
	Machine model (MM), min. value ⁽⁶⁾	100	V
ESD	Charge device model (CDM) All pins VOUTR, VOUTL	500 750	V
	IEC61000-4-2 level 4, contact ⁽⁷⁾ IEC61000-4-2 level 4, air discharge ⁽⁷⁾	+/- 8 +/- 15	kV
	Lead temperature (soldering, 10 sec)	260	°C

Table 1. Absolute maximum ratings

1. All voltage values are measured with respect to the ground pin.

- 2. Thermal shutdown is activated when maximum junction temperature is reached.
- 3. The device is protected from over-temperature by a thermal shutdown mechanism, active at 150° C.
- 4. Exceeding the power derating curves for long periods may provoke abnormal operation.
- 5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 7. The measurement is performed on an evaluation board, with ESD protection EMIF02-AV01F3.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.3 to 4.8	V
HPVDD	internal step-down DC output voltages High rail voltage Low rail voltage	1.9 1.2	V
SDA, SCL	Input voltage range	GND to V_{cc}	V
RL	Load resistor	≥16	Ω
CL	Load capacitor Serial resistor of 12 Ω minimum, $R_L \ge$ 16 Ω	0.8 to 100	nF
T _{oper}	Operating free air temperature range	-40 to +85	°C
R _{thja}	Flip-chip thermal resistance junction to ambient	90	°C/W

Table 2. Operating condition	IS
------------------------------	----

2 Typical application schematics

Figure 1. Typical application schematics for the TS4621B

Table 3.TS4621B pin description

Pin number	Pin name	Pin definition
A1	SW	Switching node of the buck converter
A2	AVDD	Analog supply voltage, connect to battery
A3	VOUTL	Output signal for left audio channel
A4	INL-	Negative input signal for left audio channel
B1	AGND	Device ground
B2	C1	Flying capacitor terminal for internal negative supply generator
B3	HPVDD	Buck converter output, power supply for amplifier
B4	INL+	Positive input signal for left audio channel
C1	C2	Flying capacitor terminal for internal negative supply generator
C2	PVSS	Negative supply generator output
СЗ	CMS	Common mode sense, to be connected as close as possible to the ground of headphone/line out plug
C4	INR+	Positive input signal for right audio channel
D1	SDA	I ² C data signal, up to V_{CC} tolerant input
D2	SCL	I ² C clock signal, up to V_{CC} tolerant input
D3	VOUTR	Output signal for right audio channel
D4	INR-	Negative input signal for right audio channel

Component	Value	Description
Cs	2.2 µF	Decoupling capacitors for V _{CC} . A 2.2 μ F capacitor is sufficient for proper decoupling of the TS4621B. An X5R dielectric and 10 V rating voltage is recommended to minimize Δ C/ Δ V when V _{CC} = 4.8 V. Must be placed as close as possible to the TS4621B to minimize parasitic inductance and resistance.
C12	2.2 µF	Capacitor for internal negative power supply operation. An X5R dielectric and 6.3 V rating voltage is recommended to minimize $\Delta C/\Delta V$ when HPVDD = 1.9 V. Must be placed as close as possible to the TS4621B to minimize parasitic inductance and resistance.
C _{SS}	2.2 µF	Filtering capacitor for internal negative power supply. An X5R dielectric and 6.3 V rating voltage is recommended to minimize $\Delta C/\Delta V$ when HPVDD = 1.9 V.
C _{in}	$Cin = \frac{1}{2 \times \pi \times Rin \times Fc}$	Input coupling capacitor that forms with Rin \approx Rindiff/2 a first-order high- pass filter with a -3 dB cutoff frequency Fc. For example, at maximum gain G = 4 dB, Rin = 12.5 k Ω , C _{in} = 1 μ F, therefore Fc = 13 Hz.
C _{out}	0.8 to 100 nF	Output capacitor of 0.8 nF minimum to 100 nF maximum. This capacitor is mandatory for operation of the TS4621B.
R _{out}	12 Ω min.	Output resistor in-series with the TS4621B output. This 12 Ω minimum resistor is mandatory for operation of the TS4621B.
L1	3.3 µH	Inductor for internal DC/DC step-down converter. References of inductors: refer to <i>Section 4.4.1</i> for more information.
Ct	10 µF	Tank capacitor for internal DC/DC step-down converter. An X5R dielectric and 6.3 V rating voltage is recommended to minimize $\Delta C/\Delta V$ when HPVDD = 1.9 V. Refer to <i>Section 4.4.2</i> for more information.

 Table 4.
 TS4621B component description⁽¹⁾

1. Refer to *Section 4.4* for a complete description of each component.

3 Electrical characteristics

Table 5. Electrical characteristics of the I²C interface

for V_{CC} = +3.6 V, AGND = 0 V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IL}	Low level input voltage on SDA, SCL pins			0.6	V
V _{IH}	High level input voltage on SDA, SCL pins	1.2			V
V _{OL}	Low level output voltage, SDA pin, I _{sink} = 3mA			0.4	V
l _{in}	Input current on SDA, SCL		V _{SDA, SCL} 600kΩ	10	μA

Table 6.Electrical characteristics of the amplifier
for V_{CC} = +3.6 V, AGND = 0 V, R_L = 32 Ω + 15 Ω , T_{amb} = 25° C
(unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Quiescent supply current, no input signal, both channels enabled		1.2	1.5	mA
۱ _s	Supply current, with input modulation, both channels enabled, HPVDD = 1.2 V, output power per channel, F=1kHz Pout = 100 μ W at 3 dB crest factor Pout = 500 μ W at 3 dB crest factor Pout = 1 mW at 3 dB crest factor Pout = 100 μ W at 10 dB crest factor Pout = 500 μ W at 10 dB crest factor Pout = 1 mW at 10 dB crest factor		2.3 3.7 4.7 2.1 3.1 3.9	3.5 5 6.5	mA
I _{STBY}	Standby current, no input signal, I ² C CR1 = 01h $V_{SDA} = 0 V$, $V_{SCL} = 0 V$		0.6	5	μA
V _{in}	Input differential voltage range ⁽¹⁾			1	V _{rms}
V _{oo}	Output offset voltage No input signal	-500		+500	μV
V _{out}	Maximum output voltage, in-phase signals $R_L = 16 \Omega$, THD+N = 1% max, f = 1 kHz $R_L = 47 \Omega$, THD+N = 1% max, f = 1 kHz $R_L = 10 k\Omega$, $R_s = 15 \Omega$, $C_L = 1 nF$, THD+N = 1% max, f = 1 kHz	0.6 1.0 1.0	0.8 1.1 1.3		V _{rms}
THD+N	Total harmonic distortion + noise, G = 0 dB V _{out} = 700 mVrms, F = 1 kHz V _{out} = 700 mVrms, 20 Hz < F < 20 kHz		0.006 0.05	0.02	%
PSRR	Power supply rejection ratio ⁽¹⁾ , $V_{ripple} = 200 \text{ mV}_{pp}$, grounded inputs F = 217 Hz, G = 0 dB, $R_L \ge 16 \Omega$ F = 10 kHz, G = 0 dB, $R_L \ge 16 \Omega$	90	100 70		dB

Symbol	Parameter	Min.	Тур.	Max.	Unit
CMRR	Common mode rejection ratio $F = 1 \text{ kHz}, G = 0 \text{ dB}, V_{ic} = 200 \text{ mV}_{pp}$ $F = 20 \text{ Hz} \text{ to } 20 \text{ kHz}, G = 0 \text{ dB}, V_{ic} = 200 \text{ mV}_{pp}$		65 45		dB
Crosstalk	Channel separation $R_L = 32 \ \Omega + 15 \ \Omega$, $G = 0 \ dB$, $F = 1 \ kHz$, $P_0 = 10 \ mW$ $R_L = 10 \ k\Omega$, $G = 0 \ dB$, $F = 1 \ kHz$, $V_{out} = 1 \ Vrms$	60 80	100 110		dB
SNR	Signal-to-noise ratio, A-weighted, $V_{out} = 1 V_{rms}$, THD+N < 1%, F = 1 kHz ⁽¹⁾ G = +4 dB G = +0 dB	99 100			dB
ONoise	Output noise voltage, A-weighted ⁽¹⁾ G = +4 dB G = +0 dB		9	11 9	μVrms
G	Gain range with gain (dB) = 20 x log[($V_{out}L/R$)/(InL/R+ - InL/R-)]	-60		+4	dB
Mute	InL/R+ - InL/R- = 1 V _{rms}			-80	dB
-	Gain step size error	-0.5		+0.5	step- size
-	Gain error (G = +4 dB)	-0.45		+0.42	dB
R _{indiff}	Differential input impedance	25	34		kΩ
	Input impedance during wake-up phase (referred to ground)		2		kΩ
Z _{out}	Output impedance when CR1 = 00h (negative supply is ON and amplifier output stages are OFF) ⁽¹⁾ F < 40 kHz F = 6 MHz F = 36 MHz	10 500 75			kΩ Ω Ω
t _{wu}	Wake-up time ⁽²⁾		12	16	ms
t _{stby}	Standby time		100		μs
t _{atk}	Attack time. Setup time between low rail and high rail voltages of internal step-down DC/DC converter		100		μs
t _{dcv}	Decay time		50		ms

Table 6.Electrical characteristics of the amplifier
for V_{CC} = +3.6 V, AGND = 0 V, R_L= 32 Ω + 15 Ω , T_{amb} = 25° C
(unless otherwise specified) (continued)

1. Guaranteed by design and parameter correlation.

2. Refer to the application information in *Section 4.2 on page 30*.

Table 7.Timing characteristics of the I²C interface for I²C interface signals over
recommended operating conditions (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
f _{SCL}	Frequency, SCL			400	kHz
t _{d(H)}	Pulse duration, SCL high	0.6			μs
t _{d(L)}	Pulse duration, SCL low	1.3			μs
t _{st1}	Setup time, SDA to SCL	100			ns
t _{h1}	Hold time, SCL to SDA	0			ns
t _f	Bus free time between stop and start condition	1.3			μs
t _{st2}	Setup time, SCL to start condition	0.6			μs
t _{h2}	Hold time, start condition to SCL	0.6			μs
t _{st3}	Setup time, SCL to stop condition	0.6			μs

Figure 4. Current consumption vs. power supply voltage

Figure 6. Maximum output power vs. load in-phase

Figure 7. Maximum output power vs. load out-of-phase

Figure 8. Maximum output power vs. power supply voltage, RL = 16 Ω

Figure 10.

Figure 12. Maximum output voltage vs. power Figure 13. Current consumption vs. total supply voltage, out-of-phase

output power, RL = 16 Ω

Figure 14. Current consumption vs. total output power, RL = 32 Ω

Figure 15. Current consumption vs. total output power, RL = 47 Ω

100

10

1 ∟ 0.1

Supply Current I_s (mA)

TS4621B

Figure 16. Current consumption vs. total output power

Figure 18. Output impedance vs. frequency in Figure 19. Differential input impedance vs. HiZ mode gain

Figure 21. THD+N vs. output power RL = 16 Ω , out-of-phase, V_{CC} = 2.5 V

10

1

0.1

0.01

1E-3

1

(%) N+DH

100

F=80Hz

10

1

0.1

THD+N (%)

ΠL

F=8kHz

F=1kHz

 $Vcc = 3.6V, RL = 16\Omega$

BW < 30kHz, Tamb = $25^{\circ}C$

G = 4dB, Inputs = 0°

10

Output Power (mW)

RL = 16 Ω , out-of-phase, V_{CC} = 4.8 V

F=8kHz

F=1kHz

=80Hz

=80Hz, 1kHz

100

100

Figure 25. THD+N vs. output power

 $Vcc = 4.8V, RL = 16\Omega$ G = 4dB, Inputs = 180°

BW < 30kHz, Tamb = 25°C

0.01

1E-3

Figure 27. THD+N vs. output power RL = 32 Ω , out-of-phase, V_{CC} = 2.5 V

10

Output Power (mW)

16/48

Figure 30. THD+N vs. output power RL = 32 Ω , in-phase, V_{CC} = 4.8 V

Figure 33. THD+N vs. output power RL = 47 Ω , out-of-phase, V_{CC} = 2.5 V

Figure 31. THD+N vs. output power

RL = 32 Ω , out-of-phase, V_{CC} = 4.8 V

100

F=80Hz

Output Power (mW)

Figure 39. THD+N vs. frequency RL = 16 Ω , out-of-phase, V_{CC} = 2.5 V

Output Power (mW)

RL = 47 Ω , out-of-phase, V_{CC} = 4.8 V

Figure 37. THD+N vs. output power

Doc ID 022194 Rev 2

57

18/48

Figure 45. THD+N vs. frequency RL = 32 Ω , out-of-phase, V_{CC} = 2.5 V

Doc ID 022194 Rev 2

Figure 51. THD+N vs. frequency RL = 47 Ω , out-of-phase, V_{CC} = 2.5 V

Doc ID 022194 Rev 2

Figure 57. THD+N vs. frequency RL = 600 Ω

10000 20k

10

1

(%) **N+OHL**

0.01

1E-3 └─ 10

Figure 59. THD+N vs. output voltage RL = 600 Ω

Figure 60. THD+N vs. input voltage, HiZ left and right

Figure 63. PSRR vs. frequency $V_{CC} = 3.6 V$

Figure 61. CMRR vs. frequency

Doc ID 022194 Rev 2

57

0 0 Vcc = 3.6V -10 Vripple = 200mVpp -20 RL = 16Ω -20 Vcc = 4.8V G = 0 dBInputs = grounded -30 Output Signal (dBV) -40 Tamb = 25°C RL ≥ 16Ω -40 Tamb = 25°C -60 -50 (dB) G=4dB H -60 4~ ┯ PSRR (-80 -70 G=0dB -100 -80 -90 -120 -100 -110 -140 G=-6dB -120 -160 -130 0 5000 10000 15000 20000 20 100 1000 10000 20k Frequency (Hz) Frequency (Hz)

Figure 64. PSRR vs. frequency V_{CC} = 4.8 V

Figure 65. Output signal spectrum

Figure 69. Crosstalk vs. frequency $RL = 10 \ k\Omega$

Doc ID 022194 Rev 2

Figure 70. Wake-up time

4 Application information

4.1 I²C bus interface

In compliance with the I²C protocol, the TS4621B uses a serial bus to control the chip's functions with the clock (SCL) and data (SDA) wires. These two lines are bi-directional (open collector) and require an external pull-up resistor (typically 10 k Ω). The maximum clock frequency in fast mode specified by the I²C standard is 400 kHz, which the TS4621B supports. In this application, the TS4621B is always the slave device and the controlling microcontroller MCU is the master device.

The slave address of the TS4621B is 1100 000x (C0h).

Table 8 summarizes the pin descriptions for the I²C bus interface.

Table 8.Pin description of the I²C bus interface

Pin	Functional description			
SDA	Serial data pin			
SCL	Clock input pin			

4.1.1 I²C bus operation

The host MCU can write to the TS4621B control register to control the TS4621B, and read from the control register to obtain a configuration from the TS4621B. The TS4621B is addressed by the byte consisting of the 7-bit slave address and the R/W bit.

Table 9.	First byte after the STAR1	message for addressing the device
----------	----------------------------	-----------------------------------

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	0	0	0	0	Х

There are four control registers (*Table 10*) named CR1 to CR4. In read mode, all the control registers can be accessed. In write mode, only CR1, CR2 and CR3 can be addressed.

 Table 10.
 Summary of control registers

Description	Register address	D7	D6	D5	D4	D3	D2	D1	D0
CR1	1	HP_EN_L	HP_EN_R	0	0	SC_L	SC_R	T_SH	SWS
CR2 volume control	2	Mute_L	Mute_R	Volume control				0	
CR3	3	0	0	0	0	0	0	HiZ_L	HiZ_R
CR4 identification	4	0	1	0	0	0	0	0	0

