imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TS4994

1W differential input/output audio power amplifier with selectable standby

Features

- Differential inputs
- Near-zero pop & click
- 100dB PSRR @ 217Hz with grounded inputs
- Operating range from V_{CC} = 2.5V to 5.5V
- 1W rail-to-rail output power @ V_{CC} = 5V, THD = 1%, F = 1kHz, with 8Ωload
- 90dB CMRR @ 217Hz
- Ultra-low consumption in standby mode (10nA)
- Selectable standby mode (active low or active high)
- Ultra fast startup time: 15ms typ.
- Available in DFN10 3x3 (0.5mm pitch) & MiniSO-8
- All lead-free packages

Description

The TS4994 is an audio power amplifier capable of delivering 1W of continuous RMS output power into an 8Ω load @ 5V. Due to its differential inputs, it exhibits outstanding noise immunity.

An external standby mode control reduces the supply current to less than 10nA. An STBY MODE pin allows the standby to be active HIGH or LOW (except in the MiniSO-8 version). An internal thermal shutdown protection is also provided, making the device capable of sustaining short-circuits.

The device is equipped with common mode feedback circuitry allowing outputs to be always

biased at $V_{CC}/2$ regardless of the input common mode voltage.

The TS4994 is designed for high quality audio applications such as mobile phones and requires few external components.

Applications

- Mobile phones (cellular / cordless)
- Laptop / notebook computers
- PDAs
- Portable audio devices

Order codes

Part number	Temperature range Package Packing		Marking	
TS4994IQT	40°C to 185°C	DFN10	Tapa & raal	K994
TS4994IST	-40 C 10 +85 C	MiniSO-8	Tape & Teel	K994

Contents

1	Appli	cation component information	3
2	Abso	lute maximum ratings and operating conditions	5
3	Elect	rical characteristics	6
4	Appli	cation information	21
	4.1	Differential configuration principle	21
	4.2	Gain in typical application schematic	21
	4.3	Common mode feedback loop limitations	21
	4.4	Low and high frequency response	22
	4.5	Calculating the influence of mismatching on PSRR performance .	23
	4.6	CMRR performance	25
	4.7	Power dissipation and efficiency	26
	4.8	Decoupling of the circuit	28
	4.9	Wake-up time: t _{WU}	
	4.10	Shutdown time	29
	4.11	Pop performance	29
	4.12	Single-ended input configuration	29
	4.13	Demoboard	30
5	Packa	age mechanical data	31
	5.1	DFN10 package	32
	5.2	MiniSO-8 package	33
6	Revis	sion history	34

1 Application component information

Components	Functional description
Cs	Supply bypass capacitor that provides power supply filtering.
C _b	Bypass capacitor that provides half supply filtering.
R _{feed}	Feedback resistor that sets the closed loop gain in conjunction with R_{in} A_V = closed loop gain = $\ R_{feed}/R_{in}.$
R _{in}	Inverting input resistor that sets the closed loop gain in conjunction with R_{feed} .
C _{in}	Optional input capacitor making a high pass filter together with R_{in} . ($F_{CL} = 1/(2\pi R_{in}C_{in})$.

Figure 1. Typical application, DFN10 version

Figure 2. Typical application, MiniSO-8 version

2 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
Vi	Input voltage (2)	GND to V _{CC}	V
T _{oper}	Operating free air temperature range	-40 to + 85	°C
T _{stg}	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽³⁾ DFN10 MiniSO-8	120 215	°C/W
P _{diss}	Power dissipation	internally limited	W
ESD	Human body model	2	kV
ESD	Machine model	200	V
	Latch-up immunity	200	mA
	Lead temperature (soldering, 10sec)	260	°C

Table 1. Absolute maximum ratings

1. All voltage values are measured with respect to the ground pin.

2. The magnitude of the input signal must never exceed V_{CC} + 0.3V / GND - 0.3V.

3. The device is protected by a thermal shutdown active at 150°C.

Table 2.	Operating	conditions
----------	-----------	------------

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.5 to 5.5	V
V _{SM}	Standby mode voltage input: Standby active LOW Standby active HIGH	V _{SM} =GND V _{SM} =V _{CC}	V
V _{STBY}	$\begin{array}{l} \mbox{Standby voltage input:} \\ \mbox{Device ON } (V_{SM} = GND) \mbox{ or device OFF } (V_{SM} = V_{CC}) \\ \mbox{Device OFF } (V_{SM} = GND) \mbox{ or device ON } (V_{SM} = V_{CC}) \end{array}$	$1.5 \le V_{STBY} \le V_{CC}$ GND $\le V_{STBY} \le 0.4$ ⁽¹⁾	V
T _{SD}	Thermal shutdown temperature	150	°C
RL	Load resistor	≥8	Ω
R _{thja}	Thermal resistance junction to ambient DFN10 ⁽²⁾ MiniSO-8	80 190	°C/W

1. The minimum current consumption (I_{STBY}) is guaranteed when V_{STBY} = GND or V_{CC} (i.e. supply rails) for the whole temperature range.

2. When mounted on a 4-layer PCB.

3 Electrical characteristics

Table 3.	Electrical characteristics for V _{CC} = +5V, GND = 0V, T _{amb} = 25°C (unless otherwise
	specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current No input signal, no load		4	7	mA
I _{STBY}	Standby current No input signal, $V_{STBY} = V_{SM} = GND$, $R_L = 8\Omega$ No input signal, $V_{STBY} = V_{SM} = V_{CC}$, $R_L = 8\Omega$		10	1000	nA
V _{oo}	Differential output offset voltage No input signal, $R_L = 8\Omega$		0.1	10	mV
V _{ICM}	Input common mode voltage CMRR ≤ -60dB	0.6		V _{CC} - 0.9	V
P _{out}	Output power THD = 1% Max, F= 1kHz, $R_L = 8\Omega$	0.8	1		W
THD + N	Total harmonic distortion + noise $P_{out} = 850mW$ rms, $A_V = 1$, $20Hz \le F \le 20kHz$, $R_L = 8\Omega$		0.5		%
PSRR _{IG}	Power supply rejection ratio with inputs grounded ⁽¹⁾ $F = 217Hz$, $R = 8\Omega$, $A_V = 1$, $C_{in} = 4.7\mu$ F, $C_b = 1\mu$ F $V_{ripple} = 200mV_{PP}$		100		dB
CMRR	Common mode rejection ratio F = 217Hz, R _L = 8 Ω , A _V = 1, C _{in} = 4.7 μ F, C _b =1 μ F V _{ic} = 200mV _{PP}		90		dB
SNR	Signal-to-noise ratio (A-weighted filter, $A_V = 2.5$) $R_L = 8\Omega$, THD +N < 0.7%, 20Hz \leq F \leq 20kHz		100		dB
GBP	Gain bandwidth product $R_L = 8\Omega$		2		MHz
V _N	Output voltage noise, $20Hz \le F \le 20kHz$, $R_L = 8\Omega$ Unweighted, $A_V = 1$ A-weighted, $A_V = 1$ Unweighted, $A_V = 2.5$ A-weighted, $A_V = 2.5$ Unweighted, $A_V = 7.5$ A-weighted, $A_V = 7.5$ Unweighted, Standby A-weighted, Standby		6 5.5 12 10.5 33 28 1.5 1		μV _{RMS}
t _{WU}	Wake-up time ⁽²⁾ $C_b = 1\mu F$		15		ms

1. Dynamic measurements - $20*\log(rms(V_{out})/rms(V_{ripple}))$. V_{ripple} is the super-imposed sinus signal relative to V_{CC} .

2. Transition time from standby mode to fully operational amplifier.

Table 4.	Electrical characteristics for V_{CC} = +3.3V (all electrical values are guaranteed with
	correlation measurements at 2.6V and 5V), GND = 0V, T _{amb} = 25°C (unless otherwise
	specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current no input signal, no load		3	7	mA
I _{STBY}	Standby current No input signal, $V_{STBY} = V_{SM} = GND$, $R_L = 8\Omega$ No input signal, $V_{STBY} = V_{SM} = V_{CC}$, $R_L = 8\Omega$		10	1000	nA
V _{oo}	Differential output offset voltage No input signal, R_L = 8Ω		0.1	10	mV
V _{ICM}	Input common mode voltage CMRR ≤ -60dB	0.6		V _{CC} - 0.9	V
P _{out}	Output power THD = 1% max, F= 1kHz, $R_L = 8\Omega$	300	380		mW
THD + N	Total harmonic distortion + noise P_{out} = 300mW rms, A_V = 1, 20Hz \leq F \leq 20kHz, R_L = 8 Ω		0.5		%
PSRR _{IG}	Power supply rejection ratio with inputs grounded ⁽¹⁾ F = 217Hz, R = 8 Ω , A _V = 1, C _{in} = 4.7 μ F, C _b =1 μ F V _{ripple} = 200mV _{PP}		100		dB
CMRR	Common mode rejection ratio $F = 217Hz$, $R_L = 8\Omega$, $A_V = 1$, $C_{in} = 4.7\mu$ F, $C_b = 1\mu$ F $V_{ic} = 200mV_{PP}$		90		dB
SNR	Signal-to-noise ratio (A-weighted filter, $A_V = 2.5$) R _L = 8 Ω , THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz		100		dB
GBP	Gain bandwidth product $R_L = 8\Omega$		2		MHz
V _N	Output voltage noise, $20Hz \le F \le 20kHz$, $R_L = 8\Omega$ Unweighted, $A_V = 1$ A-weighted, $A_V = 1$ Unweighted, $A_V = 2.5$ A-weighted, $A_V = 2.5$ Unweighted, $A_V = 7.5$ A-weighted, $A_V = 7.5$ Unweighted, Standby A-weighted, Standby		6 5.5 12 10.5 33 28 1.5 1		μV _{RMS}
t _{WU}	Wake-up time ⁽²⁾ $C_b = 1 \mu F$		15		ms

1. Dynamic measurements - $20*\log(rms(V_{out})/rms(V_{ripple}))$. V_{ripple} is the super-imposed sinus signal relative to V_{CC} .

2. Transition time from standby mode to fully operational amplifier.

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current No input signal, no load		3	7	mA
I _{STBY}	Standby current No input signal, $V_{STBY} = V_{SM} = GND$, $R_L = 8\Omega$ No input signal, $V_{STBY} = V_{SM} = V_{CC}$, $R_L = 8\Omega$		10	1000	nA
V _{oo}	Differential output offset voltage No input signal, $R_L = 8\Omega$		0.1	10	mV
V _{ICM}	Input common mode voltage CMRR ≤-60dB	0.6		V _{CC} - 0.9	v
P _{out}	Output power THD = 1% max, F= 1kHz, $R_L = 8\Omega$	200	250		mW
THD + N	Total harmonic distortion + noise $P_{out} = 225mW \text{ rms}, A_V = 1, 20Hz \le F \le 20kHz, R_L = 8\Omega$		0.5		%
PSRR _{IG}	Power supply rejection ratio with inputs grounded ⁽¹⁾ $F = 217Hz, R = 8\Omega, A_V = 1, C_{in} = 4.7\mu F, C_b = 1\mu F$ $V_{ripple} = 200mV_{PP}$		100		dB
CMRR	$ \begin{array}{l} \mbox{Common mode rejection ratio} \\ \mbox{F} = 217 \mbox{Hz}, \mbox{ R}_L = 8 \Omega, \ \ \mbox{A}_V = 1, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		90		dB
SNR	Signal-to-noise ratio (A-weighted filter, $A_V = 2.5$) $R_L = 8\Omega$, THD +N < 0.7%, 20Hz \leq F \leq 20kHz		100		dB
GBP	Gain bandwidth product $R_L = 8\Omega$		2		MHz
V _N	$\begin{array}{l} Output \mbox{ voltage noise, } 20\mbox{Hz} \leq F \leq 20\mbox{Hz}, \ R_L = 8\Omega\\ Unweighted, \ A_V = 1\\ A\mbox{-weighted}, \ A_V = 2.5\\ A\mbox{-weighted}, \ A_V = 2.5\\ Unweighted, \ A_V = 7.5\\ A\mbox{-weighted}, \ A_V = 7.5\\ Unweighted, \ Standby\\ A\mbox{-weighted}, \ Standby\\ \end{array}$		6 5.5 12 10.5 33 28 1.5 1		μV _{RMS}
t _{WU}	Wake-up time ⁽²⁾ $C_b = 1 \mu F$		15		ms

Table 5.Electrical characteristics for $V_{CC} = +2.6V$, GND = 0V, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

1. Dynamic measurements - $20*\log(rms(V_{out})/rms(V_{ripple}))$. V_{ripple} is the super-imposed sinus signal relative to V_{CC} .

2. Transition time from standby mode to fully operational amplifier.

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 L 0

1

Current Consumption (mA)

No load Tamb=25°C

Figure 3. Current consumption vs. power supply voltage

Power dissipation vs. output power

Figure 8.

Figure 7. Differential DC output voltage vs. common mode input voltage

9/35

e (V)

Figure 9. Power dissipation vs. output power Figure 10. Power dissipation vs. output power

8Ω

4.0

16Ω

4.5

<u>32Ω</u>

5.0

57

Figure 14. Power derating curves

Figure 20. Closed loop gain vs. frequency

Figure 15. Power derating curves Figu

Figure 16. Open loop gain vs. frequency

Figure 18. Open loop gain vs. frequency

Figure 22. PSRR vs. frequency

Figure 24. PSRR vs. frequency

Figure 23. PSRR vs. frequency

Figure 31. PSRR vs. common mode input voltage

Figure 33. PSRR vs. common mode input voltage

Figure 36.

Figure 38. CMRR vs. frequency

CMRR vs. frequency

Figure 34. CMRR vs. frequency

-10

-20

-30

(qB)

CMRR (

5

Vcc = 2.6V

 $RL \ge 8\Omega$

Vic = 200mVpp

 $Av = 2.5, Cin = 470 \mu F$

CMRR vs. common mode input

Figure 41. CMRR vs. common mode input voltage

Figure 40.

Figure 44. THD+N vs. output power

Figure 42. THD+N vs. output power

Figure 50. THD+N vs. output power

Figure 48. THD+N vs. output power

Figure 56. THD+N vs. output power

Figure 58. THD+N vs. output power

Figure 60. THD+N vs. output power

Figure 64. THD+N vs. frequency

Figure 66. THD+N vs. frequency

Figure 67. SNR vs. power supply voltage with Figure 68. SNR vs. power supply voltage with unweighted filter

A-weighted filter

Figure 69. Startup time vs. bypass capacitor

4 Application information

4.1 Differential configuration principle

The TS4994 is a monolithic full-differential input/output power amplifier. The TS4994 also includes a common mode feedback loop that controls the output bias value to average it at $V_{CC}/2$ for any DC common mode input voltage. This allows the device to always have a maximum output voltage swing, and by consequence, maximize the output power. Moreover, as the load is connected differentially, compared to a single-ended topology, the output is four times higher for the same power supply voltage.

The **advantages** of a full-differential amplifier are:

- Very high PSRR (power supply rejection ratio).
- High common mode noise rejection.
- Virtually zero pop without additional circuitry, giving a faster start-up time compared with conventional single-ended input amplifiers.
- Easier interfacing with differential output audio DAC.
- No input coupling capacitors required due to common mode feedback loop.
- In theory, the filtering of the internal bias by an external bypass capacitor is not necessary. But, to reach maximum performance in all tolerance situations, it is better to keep this option.

The main disadvantage is:

• As the differential function is directly linked to the mismatch between external resistors, paying particular attention to this mismatch is mandatory in order to get the best performance from the amplifier.

4.2 Gain in typical application schematic

Typical differential applications are shown in *Figure 1* and *Figure 2 on page 4*.

In the flat region of the frequency-response curve (no $\rm C_{in}$ effect), the differential gain is expressed by the relation:

$$A_{V_{diff}} = \frac{V_{O+} - V_{O}}{Diff_{input+} - Diff_{input-}} = \frac{R_{feed}}{R_{in}}$$

where $R_{in} = R_{in1} = R_{in2}$ and $R_{feed} = R_{feed1} = R_{feed2}$.

Note: For the rest of this section, Av_{diff} will be called A_V to simplify the expression.

4.3 Common mode feedback loop limitations

As explained previously, the common mode feedback loop allows the output DC bias voltage to be averaged at $V_{CC}/2$ for any DC common mode bias input voltage.

However, due to V_{ICM} limitation of the input stage (see *Table 3 on page 6*), the common mode feedback loop can play its role only within a defined range. This range depends upon

the values of V_{CC} , R_{in} and R_{feed} (A_V). To have a good estimation of the V_{ICM} value, use the following formula:

$$V_{ICM} = \frac{V_{CC} \times R_{in} + 2 \times V_{ic} \times R_{feed}}{2 \times (R_{in} + R_{feed})}$$
(V)

with

$$V_{ic} = \frac{\text{Diff}_{input+} + \text{Diff}_{input-}}{2} \qquad (V)$$

The result of the calculation must be in the range:

$$0.6V \le V_{\rm ICM} \le V_{\rm CC} - 0.9V$$

If the result of the V_{ICM} calculation is not in this range, an input coupling capacitor must be used.

Example: With V_{CC} =2.5V, $R_{in} = R_{feed}$ = 20k and V_{ic} = 2V, we find V_{ICM} = 1.63V. This is higher than 2.5V - 0.9V = 1.6V, so input coupling capacitors are required. Alternatively, you can change the V_{ic} value.

4.4 Low and high frequency response

In the low frequency region, C_{in} starts to have an effect. C_{in} forms, with R_{in} , a high-pass filter with a -3dB cut-off frequency. F_{CL} is in Hz.

$$F_{CL} = \frac{1}{2 \times \pi \times R_{in} \times C_{in}} \quad (Hz)$$

In the high-frequency region, you can limit the bandwidth by adding a capacitor (C_{feed}) in parallel with R_{feed} . It forms a low-pass filter with a -3dB cut-off frequency. F_{CH} is in Hz.

$$F_{CH} = \frac{1}{2 \times \pi \times R_{feed} \times C_{feed}} \quad (Hz)$$

While these bandwidth limitations are in theory attractive, in practice, because of low performance in terms of capacitor precision (and by consequence in terms of mismatching), they deteriorate the values of PSRR and CMRR.

The influence of mismatching on PSRR and CMRR performance is discussed in more detail in the following sections.

Example: A typical application with input coupling and feedback capacitor with $F_{CL} = 50$ Hz and $F_{CH} = 8$ kHz. We assume that the mismatching between $R_{in1,2}$ and $C_{feed1,2}$ can be neglected. If we sweep the frequency from DC to 20kHz we observe the following with respect to the PSRR value:

 From DC to 200Hz, the C_{in} impedance decreases from infinite to a finite value and the C_{feed} impedance is high enough to be neglected. Due to the tolerance of C_{in1,2}, we

must introduce a mismatch factor ($R_{in1} \times C_{in} \neq R_{in2} \times C_{in2}$) that will decrease the PSRR performance.

- From 200Hz to 5kHz, the C_{in} impedance is low enough to be neglected when compared with R_{in}, and the C_{feed} impedance is high enough to be neglected as well. In this range, we can reach the PSRR performance of the TS4994 itself.
- From 5kHz to 20kHz, the C_{in} impedance is low to be neglected when compared to R_{in}, and the C_{feed} impedance decreases to a finite value. Due to tolerance of C_{feed1,2}, we introduce a mismatching factor (R_{feed1} x C_{feed1} ≠ R_{feed2} x C_{feed2}) that will decrease the PSRR performance.

4.5 Calculating the influence of mismatching on PSRR performance

For calculating PSRR performance, we consider that C_{in} and C_{feed} have no influence.

We use the same kind of resistor (same tolerance) and ΔR is the tolerance value in %.

The following PSRR equation is valid for frequencies ranging from DC to about 1kHz.

The PSRR equation is (ΔR in %):

$$\text{PSRR} \le 20 \times \text{Log} \Bigg[\frac{\Delta R \times 100}{(10000 - \Delta R^2)} \Bigg] \quad (\text{dB})$$

This equation doesn't include the additional performance provided by bypass capacitor filtering. If a bypass capacitor is added, it acts, together with the internal high output impedance bias, as a low-pass filter, and the result is a quite important PSRR improvement with a relatively small bypass capacitor.

The complete PSRR equation (ΔR in %, C_b in microFarad and F in Hz) is:

$$\mathsf{PSRR} \leq 20 \times \log \left[\frac{\Delta \mathsf{R} \times 100}{(1000 - \Delta \mathsf{R}^2) \times \sqrt{1 + \mathsf{F}^2 \times \mathsf{C}_{\mathsf{h}}^2 \times 22.2}} \right] (\mathsf{dB})$$

Example: With $\Delta R = 0.1\%$ and $C_b = 0$, the minimum PSRR would be -60dB. With a 100nF bypass capacitor, at 100Hz the new PSRR would be -93dB.

This example is a worst case scenario, where each resistor has extreme tolerance. It illustrates the fact that with only a small bypass capacitor, the TS4994 provides high PSRR performance.

Note also that this is a theoretical formula. Because the TS4994 has self-generated noise, you should consider that the highest practical PSRR reachable is about -110dB. It is therefore unreasonable to target a -120dB PSRR.

The three following graphs show PSRR versus frequency and versus bypass capacitor C_b in worst-case conditions (${\it \Delta}R$ = 0.1%).

Figure 72. PSRR vs. frequency (worst case conditions)

The two following graphs show typical applications of the TS4994 with a random selection of four $\Delta R/R$ values with a 0.1% tolerance.

4.6 CMRR performance

For calculating CMRR performance, we consider that $\rm C_{in}$ and $\rm C_{feed}$ have no influence. $\rm C_b$ has no influence in the calculation of the CMRR.

We use the same kind of resistor (same tolerance) and ΔR is the tolerance value in %.

The following CMRR equation is valid for frequencies ranging from DC to about 1kHz.

The CMRR equation is (ΔR in %):

$$\mathsf{CMRR} \leq 20 \times \mathsf{Log} \left[\frac{\Delta \mathsf{R} \times 200}{(10000 - \Delta \mathsf{R}^2)} \right] \quad (\mathsf{dB})$$

Example: With $\Delta R = 1\%$, the minimum CMRR is -34dB.

This example is a worst case scenario where each resistor has extreme tolerance. Ut illustrates the fact that for CMRR, good matching is essential.

As with the PSRR, due to self-generated noise, the TS4994 CMRR limitation is about -110dB.

Figure 75 and *Figure 76* show CMRR versus frequency and versus bypass capacitor C_b in worst-case conditions ($\Delta R=0.1\%$).

