imall

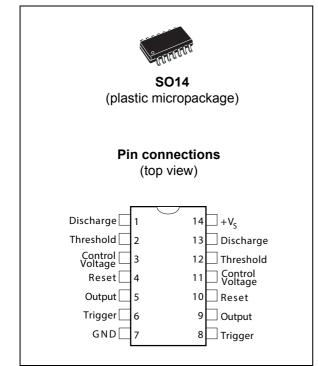
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



TS556

Low-power dual CMOS timer

Datasheet - production data

Features

- Very low power consumption:
 - 220 μ A typ at V_{CC} = 5 V
 - 180 μ A typ at V_{CC} = 3 V
- High maximum astable frequency 2.7 MHz
- Pin-to-pin and functionally compatible with bipolar NE556^(a)
- Wide voltage range: 2 V to 16 V
- Supply current spikes reduced during output transitions
- High input impedance: $10^{12} \Omega$
- Output compatible with TTL, CMOS and logic MOS

Description

The TS556 is a dual CMOS timer which offers a very low consumption: ($I_{cc(TYP)}$ TS556 = 220 µA at V_{CC} = 5 V versus $I_{cc(TYP)}$ NE556^(a) = 6 mA),

and high frequency: $(f_{(max.)}TS556 = 2.7 \text{ MHz versus}$ $f_{(max.)}NE556^{(a)} = 0.1 \text{ MHz})$

In both monostable and astable modes, timing remains very accurate.

The TS556 provides reduced supply current spikes during output transitions, which enables the use of lower decoupling capacitors compared to those required by bipolar NE556^(a).

Due to the high input impedance $(10^{12} \Omega)$, timing capacitors can also be minimized.

This is information on a product in full production.

a. Terminated product

Contents

1	Absolute maximum ratings and operating conditions
2	Schematic diagram
3	Electrical characteristics
4	Application information13
	4.1 Monostable operation
	4.2 Astable operation 14
5	Package information
	5.1 SO14 package information 16
6	Ordering information
7	Revision history

1

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	18	V
I _{OUT}	Output current	± 100	mA
R _{thja}	Thermal resistance junction to ambient ⁽¹⁾	105	°C 1.11
R _{thjc}	Thermal resistance junction to case ⁽¹⁾	31	°C/W
Тj	Junction Temperature	150	°C
T _{stg}	Storage Temperature Range		
	Human body model (HBM) ⁽²⁾	1200	
ESD	Machine model (MM) ⁽³⁾	200	V
	Charged device model (CDM) (4)	1000	

Table	1. A	bsolute	maximum	ratings
				- a chi go

1. Short-circuits can cause excessive heating. These values are typical and specified for a four layers PCB.

 Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

3. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins remain floating.

4. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

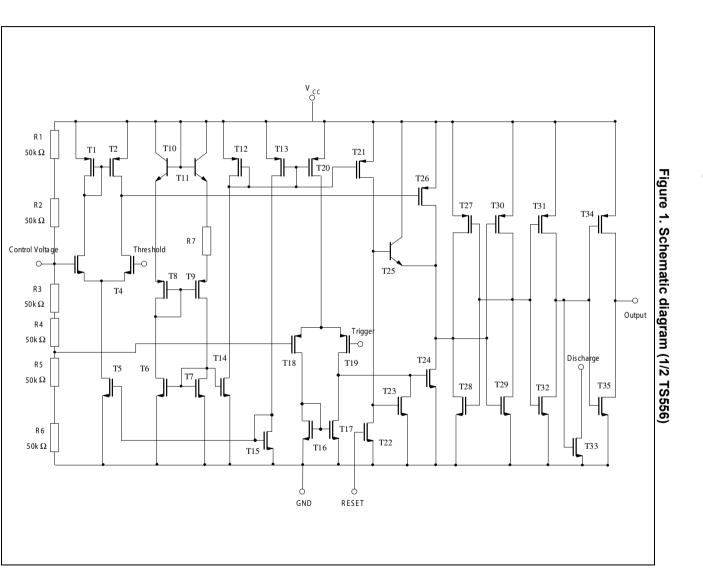
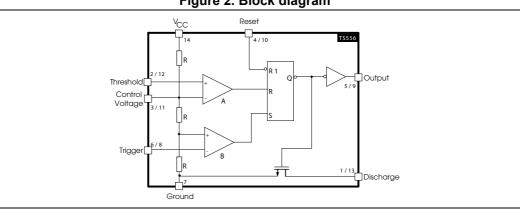

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2 to 16	V
I _{OUT}	Output sink current Output source current	10 50	mA
T _{oper}	Operating free air temperature range	-40 to 125	°C

Table 2. Operating conditions

Schematic diagram


Ν

DocID4078 Rev 3

511

Figure 2. Block diagram

Table 3. Functions table

Reset	Trigger	Threshold	Output
Low	х	X	Low
	Low	Х	High
High	High	High	Low
	High	Low	Previous state

Note: *Low: level voltage ≤ minimum voltage specified* High: level voltage ≥ maximum voltage specified x: irrelevant

3 Electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current (no load, high and low states) $T_{min} \leq T_{amb} \leq T_{max}$		130	400 400	μA
V _{CL}	Control voltage level T _{min} ≤T _{amb} ≤T _{max}	1.2 1.1	1.3	1.4 1.5	V
V_{DIS}	Discharge saturation voltage (I _{dis} = 1 mA) T _{min} ≤T _{amb} ≤T _{max}		0.05	0.2 0.25	v
I _{DIS}	Discharge pin leakage current		1	100	nA
V _{OL}	Low level output voltage (I _{sink} = 1 mA) T _{min} ≤T _{amb} ≤T _{max}		0.1	0.3 0.35	
V _{OH}	High level output voltage (I _{source} = -0.3 mA) T _{min} ≤T _{amb} ≤T _{max}	1.5 1.5	1.9		V
V _{TRIG}	Trigger voltage T _{min} ≤T _{amb} ≤T _{max}	0.4 0.3	0.67	0.95 1.05	
I _{TRIG}	Trigger current		10		n 4
I _{TH}	Threshold current		10		pА
V _{RESET}	Reset voltage T _{min} ≤T _{amb} ≤T _{max}	0.4 0.3	1.1	1.5 2.0	V
I _{RESET}	Reset current		10		pА

Table 4. Static electrical characteristics $V_{CC} = 2 \text{ V}, T_{amb} = 25 \text{ °C}, \text{ reset to } V_{CC} \text{ (unless otherwise specified)}$

2.0

pА

10

	V_{CC} = 3 V, T_{amb} = 25 °C, reset to V_{CC} (un	less othe	rwise sp	ecified)	
Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current (no load, high and low states)		180	460	μA
	T _{min} ≤T _{amb} ≤T _{max}			460	
V.	Control voltage level	1.8	2	2.2	
V _{CL}	T _{min} ≤T _{amb} ≤T _{max}	1.7		2.3	v
V	Discharge saturation voltage (I _{dis} = 1 mA)		0.05	0.2	v
V _{DIS}	T _{min} ≤T _{amb} ≤T _{max}			0.25	00 nA
I _{DIS}	Discharge pin leakage current		1	100	nA
M	Low level output voltage (I _{sink} = 1 mA)		0.1	0.3	
V _{OL}	T _{min} ≤T _{amb} ≤T _{max}			0.35	
V _{OH}	High level output voltage (I _{source} = -0.3 mA)	2.5	2.9		v
⊻он	T _{min} ≤T _{amb} ≤T _{max}	2.5			v
N/	Trigger voltage	0.9	1	1.1	
V _{TRIG}	T _{min} ≤T _{amb} ≤T _{max}	0.8		1.2	
I _{TRIG}	Trigger current		10		pА
I _{TH}	Threshold current		10		μA
V	Reset voltage	0.4	1.1	1.5	V
V _{RESET}	T _{min} ST _{amb} ST _{max}	0.3		2.0	v

T_{min} ≤T_{amb} ≤T_{max}

Reset current

I_{RESET}

Table 5. Static electrical characteristics ν,

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Timing accuracy (monostable) ⁽¹⁾ R = 10 k Ω C = 0.1 μ F, V _{CC} = 2 V R = 10 k Ω C = 0.1 μ F, V _{CC} = 3 V		1 1		%
	Timing shift with supply voltage variations (monostable) $^{(1)}$ R = 10 k Ω C = 0.1 μ F, V _{CC} = 3 V ± 0.3 V		0.5		%/V
	Timing shift with temperature ⁽¹⁾ T _{min} ≤T _{amb} ≤T _{max}		75		ppm/°C
f _{max}	Maximum astable frequency $^{(2)}$ R _A = 470 Ω R _B = 200 Ω C = 200 pF		2		MHz
	Astable frequency accuracy ⁽²⁾ $R_A = R_B = 1 k\Omega to 100 k\Omega C = 0.1 \mu F$		5		%
	Timing shift with supply voltage variations (astable mode) $^{(2)}$ R _A = R _B = 10 kΩ C = 0.1 µF, V _{CC} = 3 to 5 V		0.5		%/V
^t R	Output rise time (C _{load} = 10 pF)		25		
tF	Output fall time (C _{load} = 10 pF)		20		n 0
t _{PD}	Trigger propagation delay	1	100		ns
^t RPW	Minimum reset pulse width (V_{trig} = 3 V)	1	350		

Table 6. Dynamic electrical characteristics V_{CC} = 3 V, T_{amb} = 25 °C, reset to V_{CC} (unless otherwise specified)

1. See Figure 4

2. See Figure 6

	V_{CC} = 5 V, T_{amb} = 25 °C, reset to V_{CC} (unless otherwise specified)					
Symbol	Parameter	Min.	Тур.	Max.	Unit	
I _{CC}	Supply current (no load, high and low states) $T_{min} \leq T_{amb} \leq T_{max}$		220	500 500	μA	
V _{CL}	Control voltage level T _{min} ≤T _{amb} ≤T _{max}	2.9 2.8	3.3	3.8 3.9	v	
V _{DIS}	Discharge saturation voltage (I _{dis} = 10 mA) T _{min} ≤T _{amb} ≤T _{max}		0.2	0.3 0.35		
I _{DIS}	Discharge pin leakage current		1	100	nA	
V _{OL}	Low level output voltage (I _{sink} = 8 mA) T _{min} ≤T _{amb} ≤T _{max}		0.3	0.6 0.8		
V _{OH}	High level output voltage (I _{source} = -2 mA) T _{min} ≤T _{amb} ≤T _{max}	4.4 4.4	4.6		V	
V _{TRIG}	Trigger voltage T _{min} ≤T _{amb} ≤T _{max}	1.36 1.26	1.67	1.96 2.06		
I _{TRIG}	Trigger current		10		۳Å	
I _{TH}	Threshold current		10		рА	
V _{RESET}	Reset voltage T _{min} ≤T _{amb} ≤T _{max}	0.4 0.3	1.1	1.5 2.0	V	

Reset current

I_{RESET}

Table 7. Static electrical characteristics V_{CC} = 5 V, T_{amb} = 25 °C, reset to V_{CC} (unless otherwise specified)

pА

10

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Timing accuracy (monostable) ⁽¹⁾ R = 10 k Ω C = 0.1 μ F		2		%
	Timing shift with supply voltage variations (monostable) ⁽¹⁾ R = 10 k Ω C = 0.1 µF, V _{CC} = 5 V ± 1 V		0.38		%/V
	Timing shift with temperature $^{(1)}$ T _{min.} \leq T _{amb} \leq T _{max}		75		ppm/°C
f _{max}	Maximum astable frequency ⁽²⁾ R _A = 470 Ω R _B = 200 Ω C = 200 pF		2.7		MHz
	Astable frequency accuracy ⁽²⁾ $R_A = R_B = 1 \text{ k}\Omega \text{ to } 100 \text{ k}\Omega \text{ C} = 0.1 \mu\text{F}$	—	3	_	%
	Timing shift with supply voltage variations (astable mode) $^{(2)}$ R _A = R _B = 1 k Ω to 100 k Ω , C = 0.1 µF, V _{CC} = 5 to 12 V		0.1		%/V
^t R	Output rise time (C _{load} = 10 pF)		25		
t _F	Output fall time (C _{load} = 10 pF)		20		ne
t _{PD}	Trigger propagation delay		100		ns
^t RPW	Minimum reset pulse width ($V_{trig} = 5 V$)		350		

Table 8. Dynamic electrical characteristics V_{CC} = 5 V, T_{amb} = 25 °C, reset to V_{CC} (unless otherwise specified)

1. See Figure 4

2. See Figure 6

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current (no load, high and low states) $T_{min} \leq T_{amb} \leq T_{max}$		340	800 800	μA
V _{CL}	Control voltage level T _{min} ≤T _{amb} ≤T _{max}	7.4 7.3	8	8.6 8.7	V
V _{DIS}	Discharge saturation voltage (I _{dis} = 80 mA) T _{min} ≤T _{amb} ≤T _{max}		0.09	1.6 2.0	
I _{DIS}	Discharge pin leakage current		1	100	nA
V _{OL}	Low level output voltage (I _{sink} = 50 mA) T _{min} ≤T _{amb} ≤T _{max}		1.2	2 2.8	
V _{OH}	High level output voltage (I _{source} = -10 mA) T _{min} ≤T _{amb} ≤T _{max}	10.5 10.5	11		V
V _{TRIG}	Trigger voltage T _{min} ≤T _{amb} ≤T _{max}	3.2 3.1	4	4.8 4.9	
I _{TRIG}	Trigger current		10		n A
I _{TH}	Threshold current		10		рА
V _{RESET}	Reset voltage T _{min} ≤T _{amb} ≤T _{max}	0.4 0.3	1.1	1.5 2.0	V
I _{RESET}	Reset current		10		pА

Table 9. Static electrical characteristics V_{CC} = 12 V, T_{amb} = 25 °C, reset to V_{CC} (unless otherwise specified)

Table 10. Dynamic electrical characteristics V_{CC} = 12 V, T_{amb} = 25 °C, reset to V_{CC} (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Timing accuracy (monostable) ⁽¹⁾ R = 10 k Ω C = 0.1 μ F		4		%
	Timing shift with supply voltage variations (monostable) R = 10 k Ω C = 0.1 μ F, V _{CC} = 5 V ± 1 V		0.38		%/V
	Timing shift with temperature $T_{min} \leq T_{amb} \leq T_{max}$, $V_{CC} = 5 V$		75		ppm/°C
f _{max}	Maximum astable frequency $R_A = 470 \ \Omega$, $R_B = 200 \ \Omega$, $C = 200 \ pF$, $V_{CC} = 5 \ V$		2.7		MHz
	Astable frequency accuracy ⁽²⁾ $R_A = R_B = 1 \text{ k}\Omega \text{ to } 100 \text{ k}\Omega \text{ C} = 0.1 \mu\text{F}$		3		%
	Timing shift with supply voltage variations (astable mode) $R_A = R_B = 1 \text{ k}\Omega \text{ to } 100 \text{ k}\Omega, C = 0.1 \mu\text{F},$ $V_{CC} = 5 \text{ to } 12 \text{ V}$		0.1		%/V

1. See Figure 4

2. See Figure 6

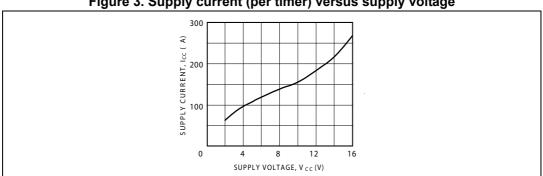


Figure 3. Supply current (per timer) versus supply voltage

4 Application information

4.1 Monostable operation

In monostable mode, the timer operates like a one-shot generator. Referring to *Figure 2*, the external capacitor is initially held discharged by a transistor inside the timer, as shown in *Figure 4*.

Figure 4. Application schematic

The circuit triggers on a negative-going input signal when the level reaches $1/3 V_{CC}$. Once triggered, the circuit remains in this state until the set time has elapsed, even if it is triggered again during this interval. The duration of the output HIGH state is given by t = 1.1 R x C.

It can be noticed that since the charge rate and the threshold level of the comparator are both directly proportional to the supply voltage, the timing interval is independent of the supply. Applying a negative pulse simultaneously to the reset terminal (pin 4) and the trigger terminal (pin 2) during the timing cycle, discharges the external capacitor and causes the cycle to start over. The timing cycle now starts on the positive edge of the reset pulse. While the reset pulse is applied, the output is driven to the LOW state.

When a negative trigger pulse is applied to pin 2, the flip-flop is set, releasing the short circuit across the external capacitor and driving the output HIGH. The voltage across the capacitor increases exponentially with the time constant $\tau = R \times C$.

When the voltage across the capacitor equals 2/3 V_{CC} , the comparator resets the flip-flop which then discharges the capacitor rapidly and drives the output to its LOW state.

Figure 5 shows the actual waveforms generated in this mode of operation. When reset is not used, it should be tied high to avoid any possible or false triggering.

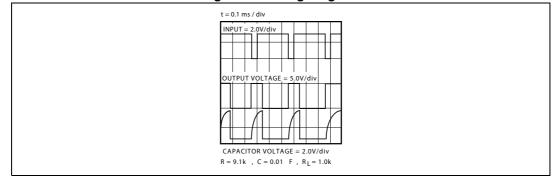


Figure 5. Timing diagram

4.2 Astable operation

When the circuit is connected as shown in *Figure 6* (pins 2 and 6 connected) it triggers itself and runs as a multivibrator. The external capacitor charges through R_A and R_B and discharges through R_B only. Thus the duty cycle may be precisely set by the ratio of these two resistors.

In the astable mode of operation, C charges and discharges between 1/3 V_{CC} and 2/3 V_{CC}. As in the triggered mode, the charge and discharge times and therefore frequency, are independent of the supply voltage.

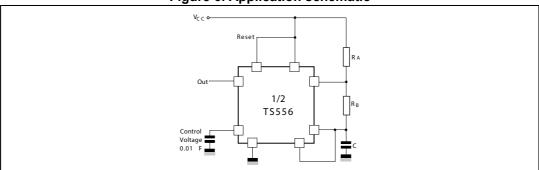
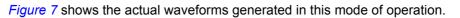



Figure 6. Application schematic

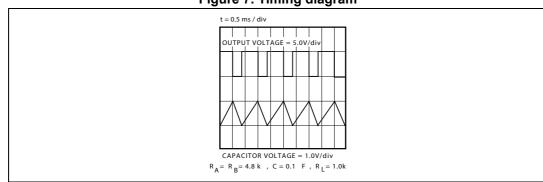
The charge time (output HIGH) is given by:

t1 = 0.693 (R_A + R_B) C

and the discharge time (output LOW) by:

t2 = 0.693 x R_B x C

Thus the total period, T, is given by:


 $T = t1 + t2 = 0.693 (R_A + 2R_B) C$

The frequency of oscillation is then:

$$f = \frac{1}{T} = \frac{1.44}{(RA + 2RB)C}$$

The duty cycle is given by:

$$D = \frac{RB}{RA + 2RB}$$

Figure 7. Timing diagram

DocID4078 Rev 3

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 SO14 package information

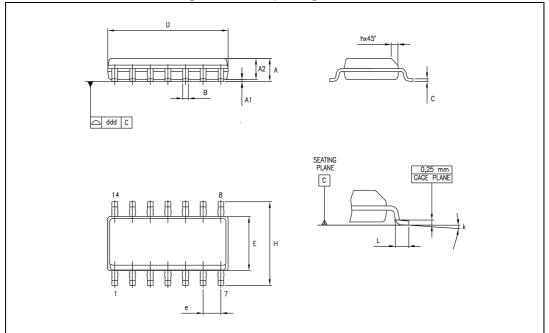


Figure 8. SO14 package outline

Table 11. SO14 mechanical data

Dimensions							
Def	Millimeters			Inches			
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	1.35		1.75	0.05		0.068	
A1	0.10		0.25	0.004		0.009	
A2	1.10		1.65	0.04		0.06	
В	0.33		0.51	0.01		0.02	
С	0.19		0.25	0.007		0.009	
D	8.55		8.75	0.33		0.34	
E	3.80		4.0	0.15		0.15	
е		1.27			0.05		
Н	5.80		6.20	0.22		0.24	
h	0.25		0.50	0.009		0.02	
L	0.40		1.27	0.015		0.05	
k	8° (max.)						
ddd			0.10			0.004	

Note: D and F dimensions do not include mold flash or protrusions. Mold flash or protrusions must not exceed 0.15 mm.

DocID4078 Rev 3

6 Ordering information

Table 12. Order code table

Order code	Temperature range	Package	Packaging	Marking
TS556IDTTR	-40 °C to 125 °C	SO14	Tape and reel	5561

7 Revision history

Date	Revision	Changes	
01-Feb-2003	1	Initial release.	
28-Oct-2008	2	Document reformatted. Added output current, ESD and thermal resistance values in <i>Table 1: Absolute maximum ratings</i> . Added output current values in <i>Table 2: Operating conditions</i> . Updated Section 5.1: DIP14 package information and Section 5.1: SO14 package information.	
30-Jun-2015 3		<i>Features</i> and <i>Description</i> : added footnote to NE556 product to explain it is terminated. Removed all references to DIP14 package Removed all temperature ranges except -40 to 125 °C <i>Table 12: Order code table</i> : removed all order codes of revision 2 and added new order code TS556IDTTR.	

Table 13. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID4078 Rev 3