

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

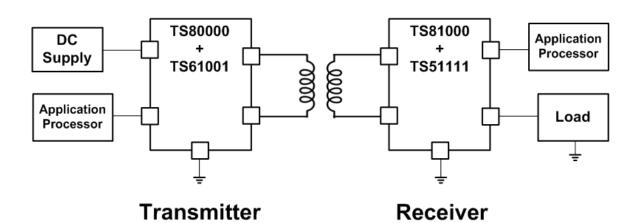
TRIUNE PRODUCTS

Features

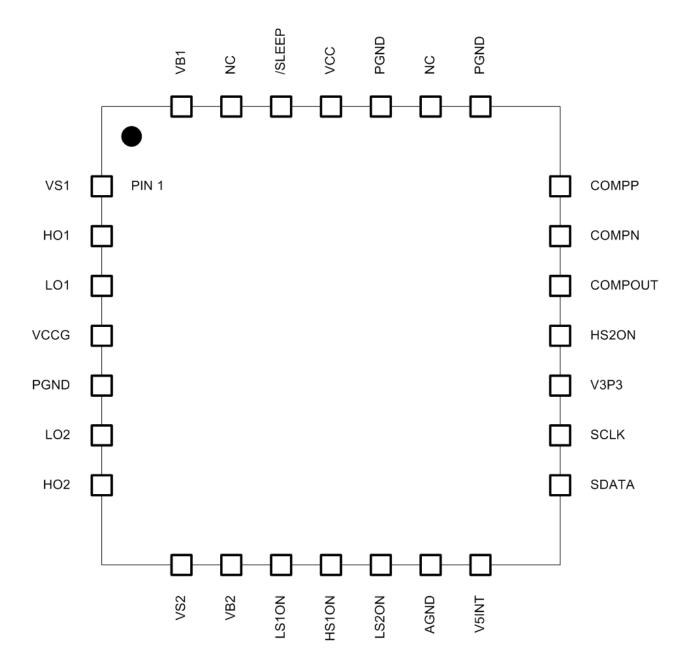
- Supports Qi®, PMA, A4WP and proprietary wireless power applications
- Power outputs scalable based on FET size
- Support for half and full-bridge power sections
- Integrated comparator
- Low external component count
- Available in 28 pin 5x5 QFN

Applications

- Multi-standard compliant and non-compliant wireless chargers for:
 - Cell Phones and Smartphones
 - GPS Devices
 - Digital Cameras
 - Tablets and eReaders
 - Portable Lighting
- Full and half-bridge power converters
- Motor drive applications

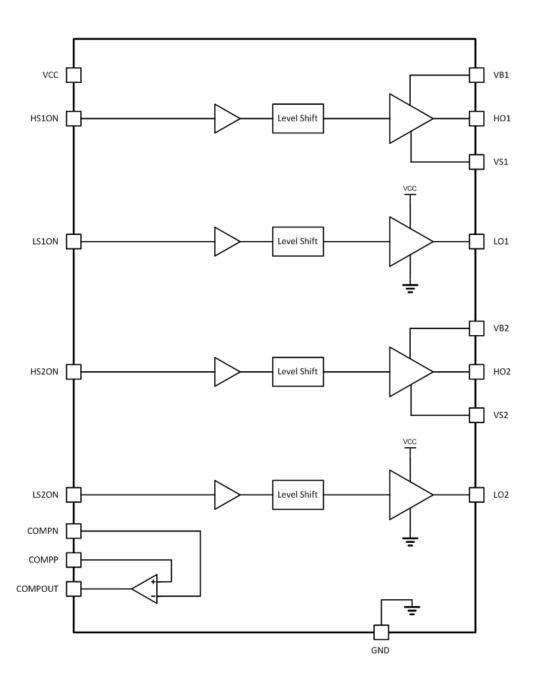

Description

The TS61001 is a high-voltage FET driver that can be used to drive N-channel devices in full or half bridge configurations. The TS61001 can support various power converter applications, multiple standard and proprietary wireless power applications, and motor driver systems.


Specifications

- Drives both low side and high side N-channel MOSFETS
- 6Ω pull-up, 2Ω pull-down gate drivers
- Independent TTL compatible inputs
- Floating gate drive and bootstrap circuits for driving high side devices – up to 85V for the bootstrap supply voltage
- 5 12V gate drive capability allows compatibility with a wide range of FETs
- Fast propagation delays (<50nS typical)
- Matched channel to channel delays (<25nS mismatch)
- Fast rise and fall times
- Optional break before make detection to set minimum dead time protection
- Available comparator, amplifier and 3.3V linear regulator (10mA capability) for supporting circuitry
- Under voltage lock out protection
- Over temperature shut down (TSD) protection

Typical Application Circuit


Pinout (Top View)

Pin Description

Pin#	Pin Name	Pin Function	Description
1	VS1	FET drive	High side MOSFET source #1
2	HO1	FET drive	High side MOSFET gate drive #1
3	LO1	FET drive	Low side MOSFET gate drive #1
4	VCCG	Input power	Input power supply (gate drive supply)
5	PGND	Power GND	Power GND
6	LO2	FET drive	Low side MOSFET gate drive #2
7	HO2	FET drive	High side MOSFET gate drive #2
8	VS2	FET drive	High side MOSFET source #2
9	VB2	Bootstrap	Bootstrap for gate drive #2
10	LS10N	PWM1_L	Low-side gate control #1
11	HS10N	PWM1_H	High-side gate control #1
12	LS2ON	PWM2_L	Low-side gate control #2
13	AGND	Analog GND	Analog GND
14	V5INT	Decoupling	Internal 5V regulator decoupling
15	SDATA	I2C Data	I2C data
16	SCLK	I2C Clock	I2C clock
17	V3P3	Decoupling	Internal 3.3V regulator decoupling
18	HS2ON	PWM2_H	High-side gate control #2
19	COMPOUT	Comparator	Comparator output
20	COMPN	Comparator	Comparator input (-)
21	COMPP	Comparator	Comparator input (+)
22	PGND	Power GND	Power GND
23	NC	No Connect	No Connect
24	PGND	Power GND	Power GND
25	VCC	Input power	Input power supply (main device supply)
26	/SLEEP	Disable	Disable Pin (active low)
27	NC	No Connect	No Connect
28	VB1	Bootstrap	Bootstrap for gate drive #1

Functional Block Diagram

Absolute Maximum Rating

Over operating free-air temperature range unless otherwise noted(1, 2)

Parameter	Value	Unit
VCCG, VCC	13.2	V
VB1, VB2	13.2 (relative to VS1, VS2)	V
SDATA, SCLK	3.6	V
LS1ON, LS2ON, HS1ON, HS2ON	3.6	V
COMPN, COMPP, COMPOUT	3.6	V
Electrostatic Discharge – Human Body Model	+/-2k	V
Electrostatic Discharge – Charge Device Model	+/-500	V
Lead Temperature (soldering, 10 seconds)	260	°C

Notes:

Thermal Characteristics

Symbol	Parameter	Value	Units	
Θ_{JA}	Thermal Resistance Junction to Air (Note 1)	34.5	°C/W	
Θ_{JC}	Thermal Resistance Junction to Case (Note 1)	2.5	°C/W	
T _{STG}	Storage Temperature Range	-65 to 150	°C	
T _{J MAX}	Maximum Junction Temperature 150 °C		°C	
T _J	Operating Junction Temperature Range	-40 to 125	°C	
Note I: Assumes I6LD 3x3 QFN with hi-K JEDEC board and I3.5 inch2 of I oz Cu and 4 thermal vias connected to PAD				

Recommended Operating Conditions

Symbol	Parameter		Тур	Max	Unit
VCCG / VCC	Input Operating Voltage		8	12.5	V
6	VCCC (VCC Dynama Camaritana		100		nF
CVCCBYP	VCCG / VCC Bypass Capacitors		10		uF
C _{3P3BYP}	Internal 3.3V Bypass Capacitor		4.7		uF
C _{V5INTBYP}	Internal 5V Bypass Capacitor		100		nF
C _{BST}	Bootstrap Capacitor		47		nF

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

⁽²⁾ All voltage values are with respect to network ground terminal.

Electrical Characteristics

Electrical Characteristics, $T_1 = -40C$ to 125C, VCC = 12V (unless otherwise noted)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VCC Supply Volt	tage		'		'	
VCCG/VCC	Input Supply Voltage		5	8	12.5	V
Iq	Input Supply current	/SLEEP = Hi; No loads; Gate drivers off	0.5	1.5	3	mA
Iq	Input Supply current	/SLEEP = Hi; Gate driver Fs = 200KHz (no load)		4	5	mA
lqq_sleep	Stand by current	/SLEEP = 0V; Inputs driven Low		3	10	uA
Ron Characteristics	S					
Ron (pulldown)	HS,LS pull down device	VCCG/VCC = 12V		1.4	2	Ω
Ron (pullup)	HS, LS pull up device	VCCG/VCC = 12V		4.0	6.5	Ω
Under Voltage L	_ock Out	,				1
UVLO (rise)	UV threshold (VCCG)	Rising threshold measurement	4.1	4.35	4.5	V
UVLO (fall)	UV threshold (VCCG)	Falling threshold measurement	3.8	4	4.3	V
UVLO (hyst)	UV hysteresis (VCCG)	Hysteresis		0.15	0.25	V
UVLO (rise)	UV threshold (VCC)	Rising threshold measurement	4.1	4.35	4.5	V
UVLO (fall)	UV threshold (VCC)	Falling threshold measurement	3.8	4	4.3	V
UVLO (hyst)	UV hysteresis (VCC)	Hysteresis		0.15	0.25	V
Input Pins VIH 8	k VIL				'	
VIH	Digital Input Pins	Gate driver inputs, I2C		1.5	2.2	V
VIL	Digital Input Pins	Gate driver inputs, I2C	0.8	1.3		V
Hyst	Digital Input Pins	Gate driver inputs, I2C	0.1	0.2		V
Propagation De	lays & Rise/Fall times					
T _{PLShI}	Prop delay (LS) high to low	LSxON to LO1 (11V)		15	50	nS
T _{PLSIh}	Prop delay (LS) low to high	LSxON to LO1(1V)		15	50	nS
T _{PHShI}	Prop delay (HS) high to low	HSxON to HOx (HOx – VSx = 10V)		25	50	nS
T _{PHSIh}	Prop delay (HS) low to high	HSxON to HOx ($HOx - VSx = 1V$)		25	50	nS
T _{PMMIshs}	Prop delay mismatch (Is to hs)	LS off to HS on mismatch		10	40	nS
T _{PMMhsls}	Prop delay mismatch (hs to ls)	HS off to LS on mismatch		10	40	nS
T_{PWmin}		Minimum pulse width response		80		nS
T _r	Rise time (HS/LS)	1nF load; 20 – 80%			20	nS
T _p	Fall time (HS/LS)	1nF load; 80 – 20%			20	nS
V3P3 Regulator						
V _{out}	Nominal Output voltage		3.15	3.3	3.45	V
lout	External loading	Output Current capability	10	15		mA
Comparator						
V _{offset}	Comparator Offset		-10	0	10	mV
V _{CMin}	Input Common Mode Range		0.2		1.8	V
T_{comp}	Comparator detection time	Input signal of 10mV		40	80	nS

Application Schematic

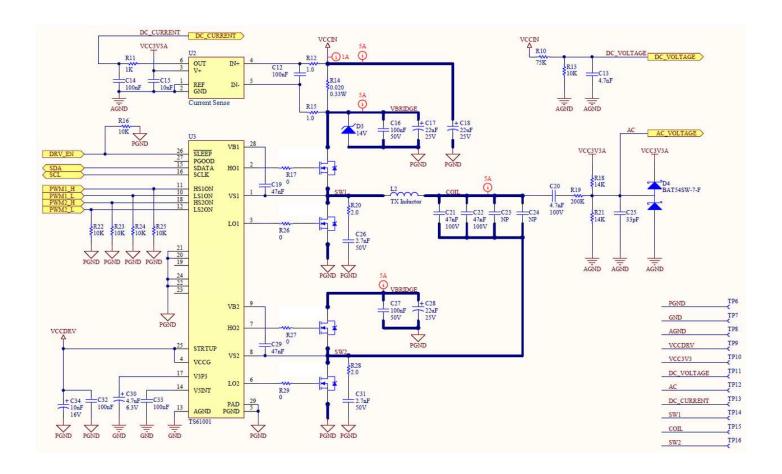
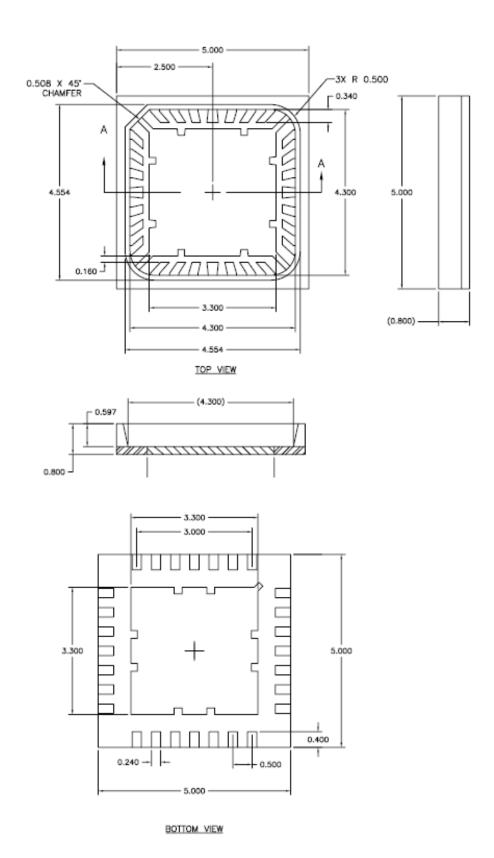



Figure 1: TS61001 Application Schematic

Package Dimensions

Ordering Information

Part Number	Description
TS61001-QFNR	Full-bridge FET Driver

RoHS and Reach Compliance

Triune Systems is fully committed to environmental quality. All Triune Systems materials and suppliers are fully compliant with RoHS (European Union Directive 2011/65/EU), REACH SVHC Chemical Restrictions (EC 1907/2006), IPC-1752 Level 3 materials declarations, and their subsequent amendments. Triune Systems maintains certified laboratory reports for all product materials, from all suppliers, which show full compliance to restrictions on the following:

- Cadmium (Cd)
- Chlorofluorocarbons (CFCs)
- Chlorinate Hydrocarbons (CHCs)
- Halons (Halogen free)
- Hexavalent Chromium (CrVI)
- Hydrobromofluorocarbons (HBFCs)
- Hydrochlorofluorocarbons (HCFCs)
- Lead (Pb)
- Mercury (Hg)
- Perfluorocarbons (PFCs)
- Polybrominated biphenyls (PBB)
- Polybrominated Diphenyl Ethers (PBDEs)

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. Triune Systems, L.L.C. is now a wholly-owned subsidiary of Semtech Corporation. The Triune Systems° name and logo, MPPT-lite™, and nanoSmart® are trademarks of Triune Systems, LLC. in the U.S.A. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2015

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com