mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3-Terminal 500mA Positive Voltage Regulator

DESCRIPTION

ONDUCTOR

The TS78M00 Series positive voltage regulators are identical to the popular TS7800 Series devices, except that they are specified for only half the output current. Like the TS7800 devices, the TS78M00 Series 3-Terminal regulators are intended for local, on-card voltage regulation. Internal current limiting, thermal shutdown circuitry and safe-area compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current with adequate heatsink is 500mA

FEATURES

- Output Voltage Range 5V & 12V
- Output current up to 500mA
- No external components required
- Internal thermal overload protection
- Internal short-circuit current limiting
- Output transistor safe-area compensation
- Output voltage offered in 4% tolerance
- Compliant to RoHS Directive 2011/65/EU and WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21

APPLICATION

- Switching power supply
- Home appliance

Pin Definition: 1. Input 2. Ground (Tab)

3. Output

Notes: MSL 3 (Moisture Sensitivity Level) per J-STD-020

TYPICAL APPLICATION CIRCUIT

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the Input ripple voltage.

1

XX = these two digits of the type number indicate voltage.

* = Cin is required if regulator is located an appreciable distance from power supply filter.

** = Co is not needed for stability; however, it does improve transient response.

TAIWAN
SEMICONDUCTOR

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	LIMIT	UNIT				
DC Input Voltage	V _{IN}	35	V				
Power Dissipation	P _D	Internally Limited	W				
Operating Junction Temperature Range	TJ	0 ~ +150	°C				
Storage Temperature Range	T _{STG}	-65~+150	°C				

THERMAL PERFORMANCE							
PARAMETER	SYMBOL	LIMIT	UNIT				
Junction to Case Thermal Resistance	R _{eJC}	10	°C/W				
Junction to Ambient Thermal Resistance	R _{eJA}	100	°C/W				

Notes: ReJA is the sum of the junction-to-case and case-to-ambient thermal resistances. The case thermal reference is defined at the solder mounting surface of the drain pins. $R_{\Theta JA}$ is guaranteed by design while $R_{\Theta CA}$ is determined by the user's board design. $R_{\Theta JA}$ shown below for single device operation on FR-4 PCB in still air.

ELECTRICAL SPECI	FICATION	IS TS78	M05					
(V _{IN} =10V, I _{OUT} =350mA, 0°C \leq	T _J ≤125°C, C _{IN} :	=0.33µF, Co	_{DUT} =0.1µF, unless othe	erwise not	ed)	1	1	
PARAMETER	SYMBOL	CONDITION		MIN	ТҮР	MAX	UNIT	
		TJ=25°C		4.80	5	5.20		
Output voltage	V _{OUT}	7.5V≤V _{IN} ≤ 5mA≤I _{OUT}	≤20V ≤350mA	4.75	5	5.25	V	
Line Deculation	DEO	T -05%0	$7.5V \le V_{IN} \le 25V$		3	100		
Line Regulation	REG _{LINE}	T_=25°C	8V≤V _{IN} ≤12V		1	50		
	550	T 05%0	5mA≤I _{OUT} ≤500mA		15	100	mV	
Load Regulation	REG _{LOAD}	T _J =25°C	5mA≤I _{OUT} ≤200mA		5	50	1	
Quiescent Current	Ι _Q	I _{OUT} =0, T _J =25°C			3	6		
		7.5V≤V _{IN} ≤25V				0.8	mA	
Quiescent Current Change	ΔI _Q	5mA≤I _{OUT} ≤350mA				0.5		
Output Noise Voltage	V _N	10Hz≤f≤100KHz, TJ=25°C			40		μV	
Ripple Rejection Ratio	RR	f=120Hz,	8V≤V _{IN} ≤18V	62	78		dB	
Voltage Drop	V _{DROP}	I _{OUT} =500n	nA, T _J =25°C		2		V	
Output Resistance	R _{OUT}	f=1kHz	f=1kHz		17		mΩ	
Output Short Circuit Current	I _{OS}	T _J =25°C			50		mA	
Peak Output Current	I ₀ peak	TJ=25°C			0.7		А	
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T_{J}$	I _{OUT} = 5mA, 0°C≤T _J ≤125°C			-0.2		mV/°C	
Noto								

1. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately

2. This specification applies only for DC power dissipation permitted by absolute maximum ratings.

TAIWAN
SEMICONDUCTOR

ELECTRICAL SPECIFICATIONS TS78M05									
$(V_{\text{IN}}=19\text{V}, \text{ I}_{\text{OUT}}=350\text{mA}, 0^{\circ}\text{C} \leq T_{\text{J}} \leq 125^{\circ}\text{C}, \text{ C}_{\text{IN}}=0.33\mu\text{F}, \text{ C}_{\text{OUT}}=0.1\mu\text{F}, \text{ unless otherwise noted})$									
PARAMETER	SYMBOL	CONDITION		MIN	ТҮР	MAX	UNIT		
		T _J =25°C		11.53	12	12.48			
Output voltage	V _{OUT}	14.5V≤V _{IN}	≤27V	11.42	11.42 12	12.60	V		
		5mA≤l _{out} :	≤350mA						
Line Regulation	DEC	T -25°C	14.5V≤V _{IN} ≤30V		10	240			
	REGLINE	1j-25 C	$15V \le V_{IN} \le 19V$		3	120			
Lood Domilation	DEO	T _05%0	5mA≤I _{OUT} ≤500mA		12	240	mv		
Load Regulation	REG _{LOAD}	T _J =25°C	5mA≤I _{OUT} ≤200mA		4	120			
Quiescent Current	Ι _Q	I _{OUT} =0, T _J =25°C			3	6			
	Δl _Q	14.5V≤V _{IN} ≤27V				0.8	mA		
Quiescent Current Change		5mA≤I _{OUT} ≤350mA				0.5			
Output Noise Voltage	V _N	10Hz≤f≤10	00KHz, T _J =25°C		75		μV		
Ripple Rejection Ratio	RR	f=120Hz,	15V≤V _{IN} ≤25V		80		dB		
Voltage Drop	V _{DROP}	I _{OUT} =500m	וA, T _J =25°C		2		V		
Output Resistance	R _{OUT}	f=1kHz			18		mΩ		
Output Short Circuit Current	I _{OS}	T _J =25°C			50		mA		
Peak Output Current	$I_{\rm O}$ peak	T _J =25°C			0.7		А		
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T_{J}$	I _{OUT} = 5mA, 0°C≤T _J ≤125°C			-0.3		mV/°C		

Note:

1. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately

2. This specification applies only for DC power dissipation permitted by absolute maximum ratings.

ORDERING INFORMATION

OUTPYT VOLTAGE	PART NO.	PACKAGE	PACKING
5V	TS78M05CP ROG	TO-252 (DPAK)	2,500pcs / 13" Reel
12V	TS78M12CP ROG	TO-252 (DPAK)	2,500pcs / 13" Reel

ELECTRICAL CHARACTERISTIC CURVE

Figure 3. Bias Current vs. Output Current

Voltage

Figure 2. Dropout Voltage vs. Junction Temperature

Figure 4. Ripple Rejection vs. Frequency

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

SUGGESTED PAD LAYOUT (Unit: Millimeters)

TO-252 (DPAK)

MARKING DIAGRAM

,	\square	
	5	
	78Mxx	
	YML CP	
	<u>זרטזר</u>	
	ון ון	

XX = Output Voltage
05 =5V 12 =

Y = Year CodeM = Month Code for Halogen Free Product

12 =12V

IVIOI	iin Code	101	nalogen Free Product				
0	=Jan	Ρ	=Feb	Q	=Mar	R	=Apr
S	=May	Т	=Jun	U	=Jul	V	=Aug
W	=Sep	Х	=Oct	Υ	=Nov	Ζ	=Dec
	<u> </u>						

L = Lot Code

TS78M00 Series

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.