

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

High Voltage NPN Transistor with Diode

TO-251 (IPAK)

TO-252 (DPAK)

Pin Definition:

- Base
 Collector
- 3. Emitter

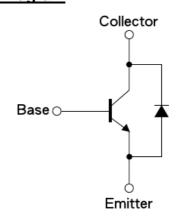
PRODUCT SUMMARY

BV _{CEO}	400V
BV _{CBO}	700V
Ic	4A
V _{CE(SAT)}	0.25V (Typ.) @ I _C =0.5A, I _B =0.1A

Features

- Build-in Free-wheeling Diode Makes Efficient Antisaturation Operation
- Low Base Drive Requirement
- Suitable for Half Bridge Light Ballast Application

Structure


- Silicon Triple Diffused Type
- NPN Silicon Transistor
- Integrated Anti-parallel Collector-Emitter Diode

Ordering Information

Part No.	Package	Packing
TSC5304EDCP ROG	TO-252	2.5Kpcs / 13" Reel
TSC5304EDCH C5G	TO-251	75pcs / Tube

Note: "G" denote for Halogen Free Product

Block Diagram

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Collector-Base Voltage	V_{CBO}	700	V	
Collector-Emitter Voltage @ V _{BE} =0V	$V_{\sf CES}$	700	V	
Collector-Emitter Voltage	V_{CEO}	400	V	
Emitter-Base Voltage	V_{EBO}	9	V	
Collector Current	I _C	4	Α	
Collector Peak Current (tp <5ms)	I _{CM}	8	Α	
Base Current	I _B	2	Α	
Base Peak Current (tp <5ms)	I _{BM}	4	Α	
Power Total Dissipation @ Tc=25°C	P _{DTOT}	35	W	
Maximum Operating Junction Temperature	T_J	+150	°C	
Storage Temperature Range	T _{STG}	-55 to +150	°C	

High Voltage NPN Transistor with Diode

Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Case	R⊖ _{JC}	3.57	°C/W
Thermal Resistance - Junction to Ambient	R⊖ _{JA}	68	°C/W

Electrical Specifications (Ta = 25°C unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static	1					
Collector-Base Voltage	$I_C = 1 \text{ mA}, I_B = 0$	BV _{CBO}	700			V
Collector-Emitter Breakdown Voltage	$I_{C} = 10 \text{mA}, I_{E} = 0$	BV _{CEO}	400			V
Emitter-Base Breakdown Voltage	$I_E = 1 \text{ mA}, I_C = 0$	BV_{EBO}	9			V
Collector Cutoff Current	$V_{CB} = 700 V, I_{E} = 0$	I _{CBO}			100	uA
Collector Cutoff Current	$V_{CE} = 400 V, I_{B} = 0$	I _{CEO}			250	uA
Emitter Cutoff Current	$V_{EB} = 7V, I_{C} = 0$	I _{EBO}			10	uA
	$I_C = 0.5A, I_B = 0.1A$	V _{CE(SAT)1}		0.25	0.7	
Callacter Emitter Caturation Valtage	$I_C = 1A, I_B = 0.2A$	V _{CE(SAT)2}		0.5	1	V
Collector-Emitter Saturation Voltage	$I_C = 2.5A, I_B = 0.5A$	V _{CE(SAT)3}		1.2	1.5	
	$I_C = 4A$, $I_B = 1A$	V _{CE(SAT)4}		0.5		
Dana Farittan Catamatian Valtana	$I_{C} = 1A, I_{B} = 0.2A$	V _{BE(SAT)1}			1.1	V
Base-Emitter Saturation Voltage	$I_C = 2A$, $I_B = 0.5A$	V _{BE(SAT)2}			1.2	
	$V_{CE} = 5V$, $I_C = 10mA$		10			
DC Current Gain	$V_{CE} = 5V$, $I_C = 1A$	Hfe	17		37	
	$V_{CE} = 5V$, $I_C = 2A$		12		32	
Forward Voltage Drop	I _F =2A	Vf			2	V
Turn On Time	$V_{CC} = 250V, I_{C} = 1A,$	t _{ON}		0.2	0.6	uS
Storage Time	$I_{B1}=I_{B2}=0.2A$, $t_p=25uS$	t _{STG}		3.0	4.5	uS
Fall Time	Duty Cycle<1%	t _f		0.2	0.3	uS
Turn On Time	$V_{CC} = 5V, I_{C} = 0.1A,$	t _{ON}		0.35	0.6	uS
Storage Time	$I_{B1} = I_{B2} = 0.02A$, $t_p = 25uS$	t _{STG}	6.5		8.5	uS
Fall Time	Duty Cycle<1%	t _f		0.3	0.6	uS

Notes: Pulsed duration =380uS, duty cycle ≤2%

High Voltage NPN Transistor with Diode

Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

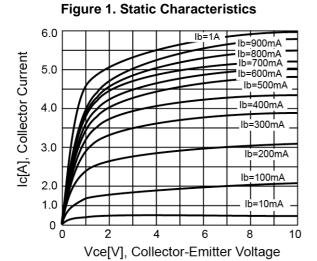


Figure 3. Vce(sat) v.s. Vbe(sat)

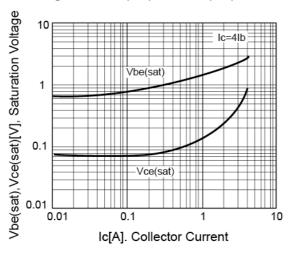


Figure 5. Reverse Bias SOA

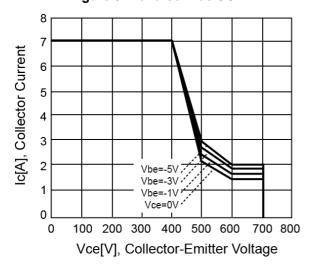


Figure 2. DC Current Gain

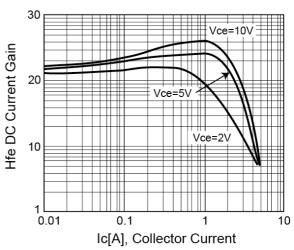


Figure 4. Power Derating

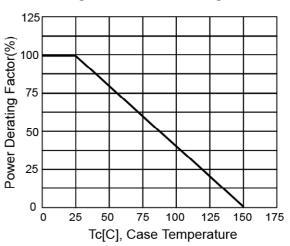
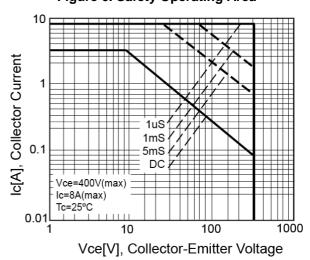
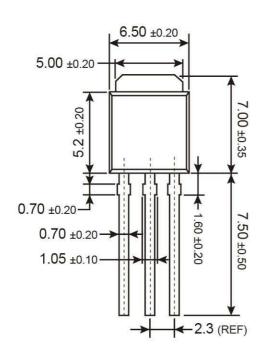
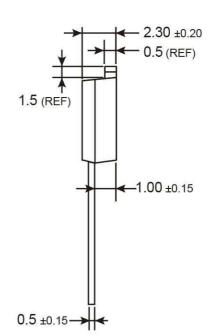



Figure 6. Safety Operating Area

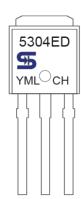
Version: E11

3/6





High Voltage NPN Transistor with Diode

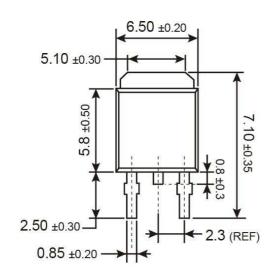

TO-251 Mechanical Drawing

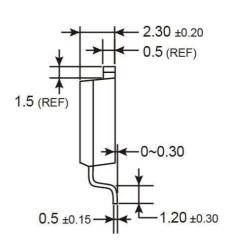
Unit: Millimeters

Marking Diagram

Y = Year Code

M = Month Code for Halogen Free Product (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)


L = Lot Code



High Voltage NPN Transistor with Diode

TO-252 Mechanical Drawing

Unit: Millimeters

Marking Diagram

Y = Year Code

M = Month Code for Halogen Free Product (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

L = Lot Code

High Voltage NPN Transistor with Diode

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.