imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TO-92S

Pin Definition:

1. V_{CC} 2. GND

Pin Definition: 1. V_{CC}

- 2. Output
- 3. GND

Description

TSH188 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress. TSH188 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries. This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present

Ordering Information

Package

TO-92S

TO-92S

SOT-23

Note: "G" denote for Halogen Free Product

Packing

1Kpcs / Bulk Bag

2Kpcs / Ammo

3Kpcs / 7" Reel

Part No.

TSH188CT B0G

TSH188CT A3G

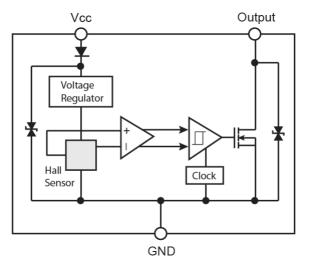
TSH188CX RFG

Features

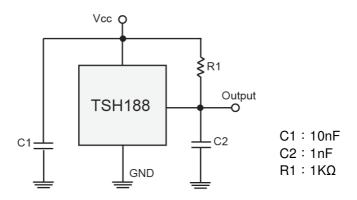
- 100% tested at 125°C
- Temperature compensation function
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.

Application

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing, Position sensing, Current sensing
- Revolution counting
- Solid-State Switch
- Linear/Angular Position Detection


Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Characteristics	Limit	Value	Unit		
Supply voltage	V _{CC}	28	V		
Output Voltage	V _{OUT}	28	V		
Reverse voltage	V _{CC/OUT}	-28	V		
Magnetic flux density		Unlimited	Gauss		
Output current	I _{OUT}	50	mA		
Operating Temperature Range	T _{OPR}	-40 to +125	°C		
Storage temperature range	T _{STG}	-55 to +150	°C		
Maximum Junction Temp	TJ	150	°C		
The meal Desistance I hunsting to Ambiguit	TO-92S	0	206	°C/W	
Thermal Resistance - Junction to Ambient	SOT-23	θ_{JA}	543	C/VV	
	TO-92S	0	148	°C/W	
Thermal Resistance - Junction to Case	SOT-23	θ _{JC}	410	C/VV	
Package Dewar Dissinction	TO-92S	D	606	m\//	
Package Power Dissipation	SOT-23	- P _D	230	mW	

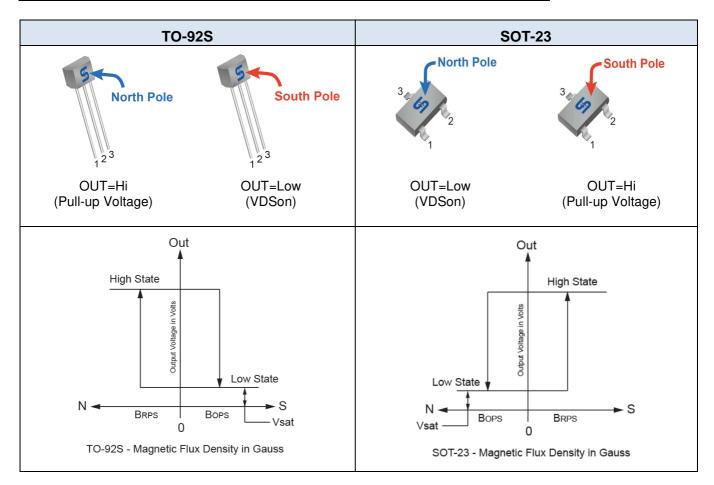

Note: Do not apply reverse voltage to V_{CC} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Block Diagram

Typical Application Circuit

Electrical Specifications (DC Operating Parameters : T_A=+25°C,V_{CC}=12V)

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Operating	2.5		24	V
Supply Current	B <b<sub>OP</b<sub>			5	mA
Output Saturation Voltage	I _{OUT} =20mA,B>B _{OP}			400	mV
Output Leakage Current	$I_{OFF} B < B_{RP}, V_{OUT} = 12V$			10	uA
Internal Oscillator Chopper Frequency			69		kHz
Output Rise Time	R _L =1.1KΩ, C _L =20pF		0.04	0.45	uS
Output Fall Time	R _L =820Ω; C _L =20pF		0.18	0.45	uS
ESD	НВМ	4			KV
Operate Point		5(-25)		25(-5)	Gauss
Release Point		-25(5)		-5(25)	Gauss
Hysteresis			30		Gauss


Note: 1G (Gauss) = 0.1mT (millitesta)

Output Behavior versus Magnetic Pole

DC Operating Parameters: $T_A = -40$ to 125° C, $V_{CC} = 2.5 \sim 24$ V

Parameter	Test condition	OUT (TO-92S)	OUT (SOT-23)		
North pole	B>B _{OP}	Open(Hi)	Low		
South pole	B <b<sub>RP</b<sub>	Low	Open(Hi)		

Characteristic Performance

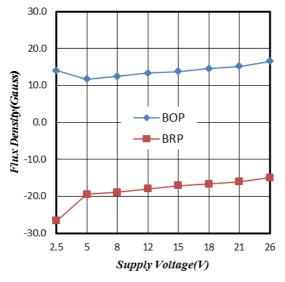


Figure 1. Supply Voltage vs. Flux Density

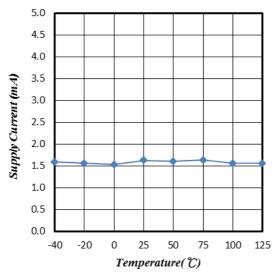


Figure 3. Supply Current vs. Temperature

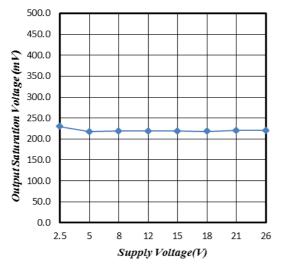


Figure 5. Supply Voltage vs. Saturation Voltage

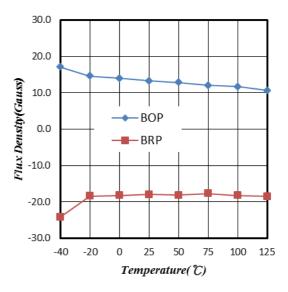


Figure 2. Temperature vs. Flux Density

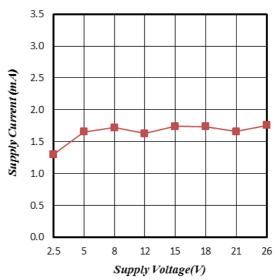


Figure 4. Supply Current vs. Supply Voltage

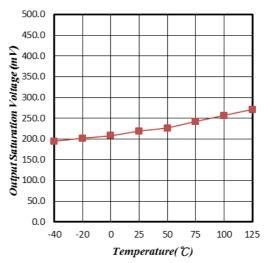


Figure 6. Saturation Voltage vs. Temperature

Characteristic Performance

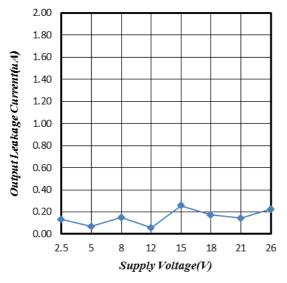


Figure 7. Supply Voltage vs. Leakage Current

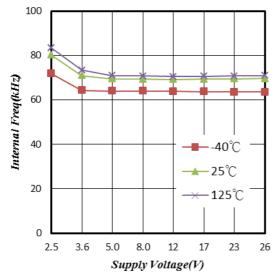


Figure 9. Supply Voltage vs. Internal Frequency Figure 10. Temperature vs. Internal Frequency

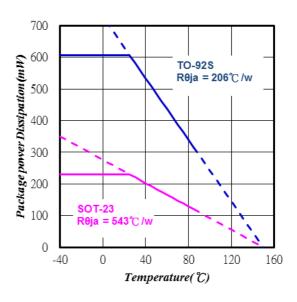
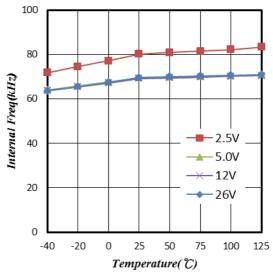
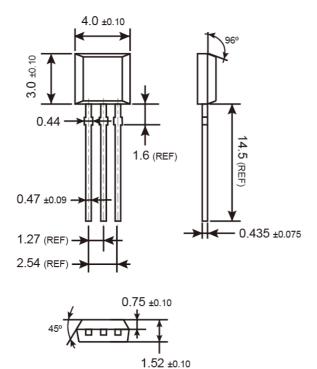
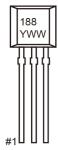
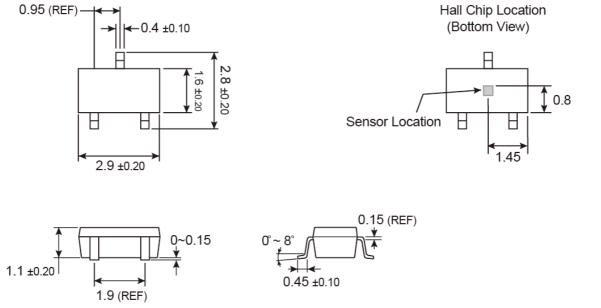




Figure 8. Temperature vs. Power Dissipation

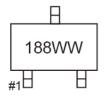

TO-92S Mechanical Drawing

Hall Chip Location (Top View)

Unit: Millimeters


Marking Diagram

- **188** = Device Code
- Y = Year Code
- WW = Week Code (01~52)



SOT-23 Mechanical Drawing

Unit: Millimeters

Marking Diagram

188 = Device Code

WW = Week Code Table

week	1	2	3	4	5	6	7	8	9	10	11	12	13
code	OA	OB	OC	OD	OE	OF	OG	OH	OI	OJ	OK	OL	OM
week	14	15	16	17	18	19	20	21	22	23	24	25	26
code	ON	00	OP	QQ	OR	OS	OT	OU	OV	OW	OX	OY	OZ
week	27	28	29	30	31	32	33	34	35	36	37	38	39
code	PA	PB	PC	PD	PE	PF	PG	PH	ΡI	PJ	PK	PL	PM
week	40	41	42	43	44	45	46	47	48	49	50	51	52
code	PN	PO	PP	PQ	PR	PS	PT	PU	PV	PW	PX	PY	ΡZ

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.