

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TSH190

Bipolar High Voltage Hall Effect Latch

TO-92S

5

Pin Definition:

- 1. V_{CC} 2. GND
- 3. Output

Pin Definition:

- $1. V_{CC}$
- 2. Output
- 3. GND

Description

TS190, Hall-Effect sensor, designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall Voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, open collector output. An internal band gap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range. The device is identical except for magnetic switch points. A south pole of sufficient strength will turn the output on. The North Pole is necessary to turn the output off. An on-board regulator permits operation with supply voltages of 4V to 30 V.

Features

- Optimized for BLDC motor applications
- High Peak Voltage of 65V
- 100% tested at 125°C
- Temperature compensation function

Ordering Information

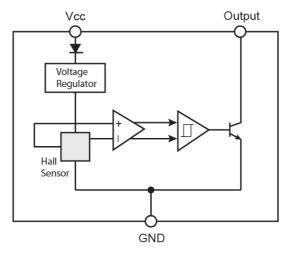
Part No.	Package	Packing			
TSH190CT B0G	TO-92S	1Kpcs / Bulk Bag			
TSH190CX RFG	SOT-23	3Kpcs / 7" Reel			

Note: "G" denote for Halogen Free Product

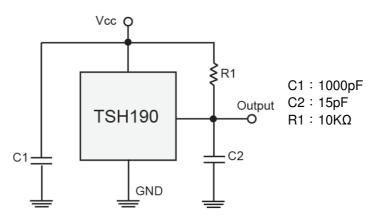
Application

- High temperature Fan motor
- 3 phase BLDC motor application
- Fan motor application
- Speed sensing
- Revolution counting
- E-Bike

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)


Characteristics	Limit	Value	Unit		
Supply voltage	V _{CC}	65	V		
Output Voltage		V_{OUT}	65	V	
Reverse voltage		V _{CC/OUT}	-32	V	
Magnetic flux density			Unlimited	Gauss	
Output current	I _{OUT}	25	mA		
Operating Temperature Range	T _{OPR} -40 to +125		°C		
Storage temperature range	T _{STG}	-55 to +150	°C		
Maximum Junction Temp	TJ	150	°C		
Thermal Resistance - Junction to Ambient	TO-92S	0	206	°C/W	
Thermal Resistance - Junction to Ambient	SOT-23	$\theta_{\sf JA}$	543		
Thermal Resistance - Junction to Case	TO-92S	0	148	°C/W	
Thermal Resistance - Junction to Case	SOT-23	$\theta_{\sf JC}$	410	C/VV	
Package Power Discipation	TO-92S	В	606	mW	
Package Power Dissipation	SOT-23	P _D	230	11100	

Note: Do not apply reverse voltage to V_{CC} and V_{OUT} Pin, It may be caused for Miss function or damaged device.



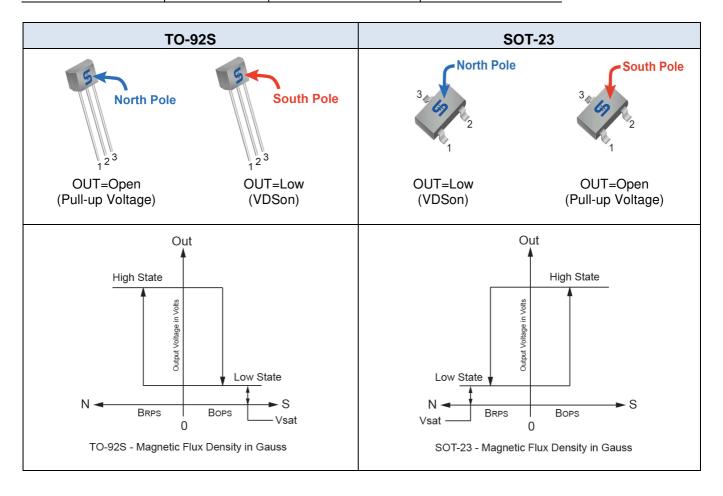
Block Diagram

Typical Application Circuit

Electrical Specifications (DC Operating Parameters : T_A=+25°C,V_{CC}=12V)

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Operating	4		30	V
Supply Current	B <b<sub>OP</b<sub>		3	8	mA
Output Saturation Voltage	$I_{OUT} = 5mA, B>B_{OP}$			500	mV
Output Leakage Current	I_{OFF} B <b<sub>RP, $V_{OUT} = 24V$</b<sub>			10	uA
Output Rise Time	$R_L=820\Omega$, $C_L=20pF$		1.5		uS
Output Fall Time	$R_L=820\Omega; C_L=20pF$		1.5		uS

Magnetic Specifications


Parameters	Test Conditions	Min	Тур	Max	Units
Operate Point		10		110	Gauss
Release Point		-110		-10	Gauss
Hysteresis		-	100	-	Gauss

Note: 1G (Gauss) = 0.1mT (millitesta)

Output Behavior versus Magnetic Pole

DC Operating Parameters: $T_A = -40$ to 125° C, $V_{CC} = 4$ to 30V

Parameter	Package	Test condition	OUT		
North pole	TO-92S	B>B _{OP}	Open		
South pole	TO-92S	B <b<sub>RP</b<sub>	Low		
North pole	SOT-23	B>B _{OP}	Low		
South pole	SOT-23	B <b<sub>RP</b<sub>	Open		

Characteristic Performance

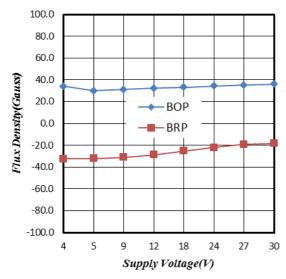


Figure 1. Supply Voltage vs. Flux Density

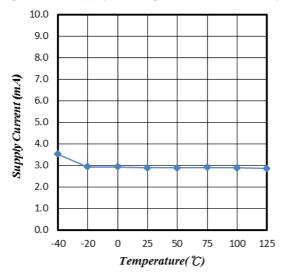


Figure 3. Supply Current vs. Temperature

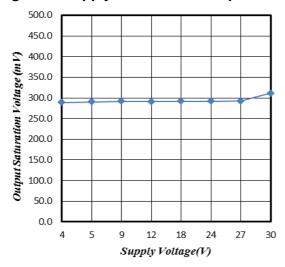


Figure 5. Supply Voltage vs. Saturation Voltage

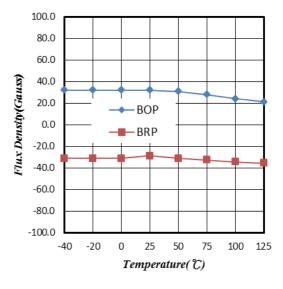


Figure 2. Temperature vs. Flux Density

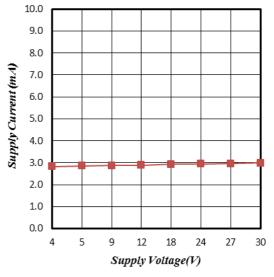


Figure 4. Supply Current vs. Supply Voltage

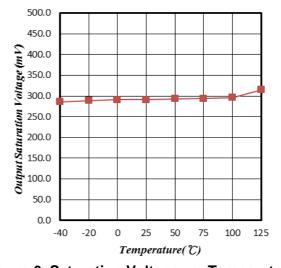
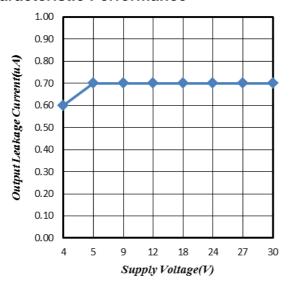
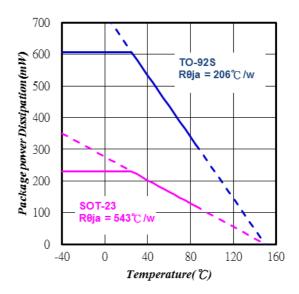



Figure 6. Saturation Voltage vs. Temperature

Characteristic Performance



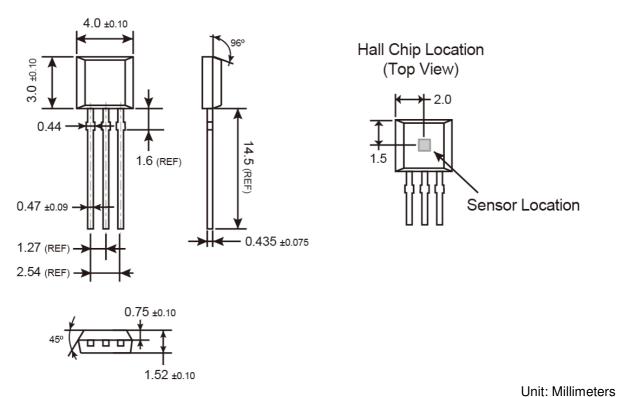
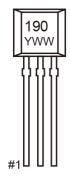

Figure 7. Supply Voltage vs. Leakage Current

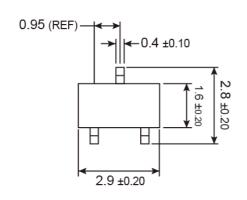
Figure 8. Temperature vs. Power Dissipation

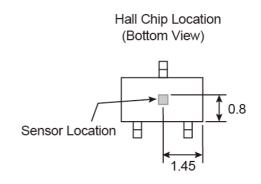


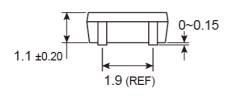
TO-92S Mechanical Drawing

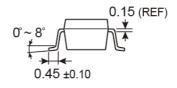
Offic. Millimeters

Marking Diagram

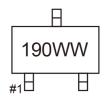



190 = Device Code
Y = Year Code
WW = Week Code (01~52)





SOT-23 Mechanical Drawing



Unit: Millimeters

Marking Diagram

190 = Device Code

= Week Code Table

= vveek	Code	i abie	;										
week	1	2	3	4	5	6	7	8	9	10	11	12	13
code	OA	OB	OC	OD	OE	OF	OG	OH	OI	OJ	OK	OL	OM
week	14	15	16	17	18	19	20	21	22	23	24	25	26
code	ON	00	OP	OQ	OR	OS	OT	OU	OV	OW	OX	OY	ΟZ
week	27	28	29	30	31	32	33	34	35	36	37	38	39
code	PA	PB	PC	PD	PE	PF	PG	PH	PI	PJ	PK	PL	PM
week	40	41	42	43	44	45	46	47	48	49	50	51	52
code	PNI	PΩ	PP	PΩ	PR	Pς	PT	PH	PΙ/	ΡW	PΥ	PΥ	P7

TSH190

Bipolar High Voltage Hall Effect Latch

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.