imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Pull-up Resistor Integrated Hall Effect Latch

DESCRIPTION

TSH193 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

TSH193 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Pull-up resistor output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low inputoffset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

FEATURES

- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Pull-up resistor integrated
- ESD Protection >4kV HBM
- Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21 definition

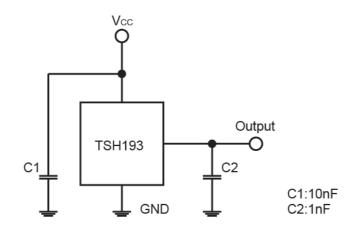
APPLICATION

- High temperature fan motor
- 3 phase BLDC motor application
- Speed sensing, position sensing
- Revolution counting
- Solid-state switch
- Angular position detection
- Proximity detection

SOT-23

Pin Definition:

1. Vcc


2. Output

3. Ground

Notes: Moisture sensitivity level: level 3. Per J-STD-020

TYPICAL APPLICATION CIRCUIT

Taiwan Semiconductor

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)					
PARAMETER		SYMBOL	LIMIT	UNIT	
Supply voltage		V _{CC}	18	V	
Output current		Ι _{ουτ}	13	mA	
Magnetic flux density			Unlimited	Gauss	
Operating Temperature Range		T _{OPR}	-40 to +125	°C	
Storage temperature range		T _{STG}	-55 to +150	°C	
Maximum Junction Temperature		TJ	150	°C	
Deckare Dever Dissinction	TO-92S	P	606		
Package Power Dissipation	SOT-23	P _D	230	mW	

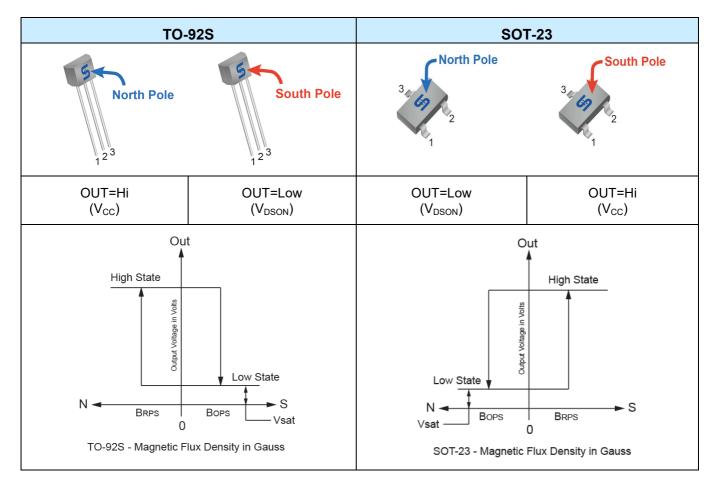
THERMAL PERFORMANCE				
PARAMETER		SYMBOL	LIMIT	UNIT
Thermal Desistence Junction to Case	TO-92S	Р	206	°C/W
Thermal Resistance - Junction to Case	SOT-23	R _{ejc}	543	
Thermal Desistance	TO-92S	R _{eja} -	148	°C/W
Thermal Resistance - Junction to Ambient	SOT-23		410	

Note: Considering 6 cm² of copper board heat-sink

ELECTRICAL SPECIFICATIONS (DC Operating Parameters : T _A =+25°C, V _{CC} =12V)					
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Supply Voltage	Operating	2.5		16	V
Supply Current	B <b<sub>OP</b<sub>			5	mA
Output Saturation Voltage	B>B _{OP}			400	mV
Output Leakage Current	I _{OFF} B <b<sub>RP, V_{OUT}=12V</b<sub>			10	μA
Output Rise Time	R _L =1.1KΩ, C _L =20pF		0.04	0.45	μs
Output Fall Time	R _L =820Ω; C _L =20pF		0.18	0.45	μs
ESD	НВМ	4			kV
Pull-up Resistor			10		kΩ
Operate Point (B _{OP})		5		25	Gauss
Release Point (B _{RP})		-25		-5	Gauss
Hysteresis (B _{OP} - B _{RP})			30		Gauss

Note: 1G (gauss) = 0.1mT (millitesla)

ORDERING INFORMATION


PART NO.	PACKAGE	PACKING
TSH193CT B0G	TO-92S	1kpcs / Bag
TSH193CX RFG	SOT-23	3kpcs / 7"Reel

OUTPUT BEHAVIOR VERSUS MAGNETIC POLE

DC Operating Parameters: $T_A = -40$ to 125° C, $V_{CC} = 2.5 \sim 18V$				
Parameter	Test condition	OUT (TO-92S)	OUT (S	

Parameter	Test condition	OUT (TO-92S)	OUT (SOT-23)
North pole	B>B _{OP}	Hi	Low
South pole	B <b<sub>RP</b<sub>	Low	Hi

CHARACTERISTICS CURVES

(T_c = 25° C unless otherwise noted)

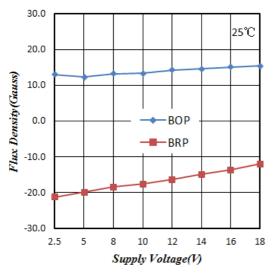


Figure 1. Flux Density vs. Supply Voltage

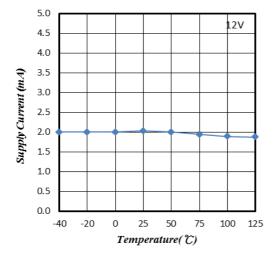


Figure 3. Supply Current vs. Temperature

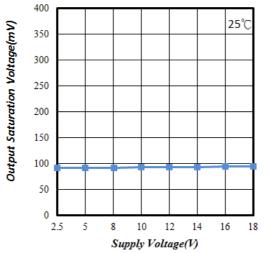


Figure 5. Saturation Voltage vs. Supply Voltage

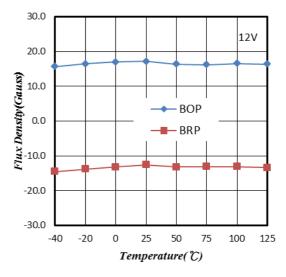


Figure 2. Flux Density vs. Temperature

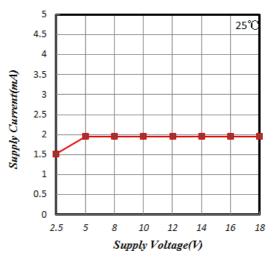


Figure 4. Supply Current vs. Supply Voltage

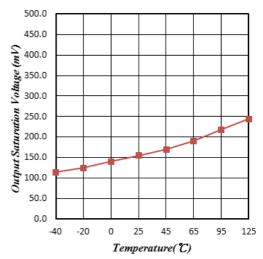


Figure 6. Saturation Voltage vs. Temperature

CHARACTERISTICS CURVES

(T_C = 25°C unless otherwise noted)

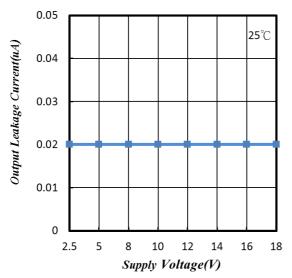


Figure 7. Leakage Current vs. Supply Voltage

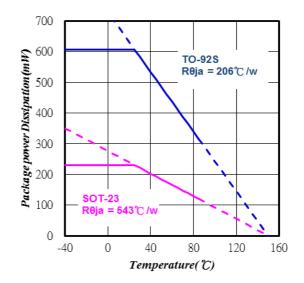
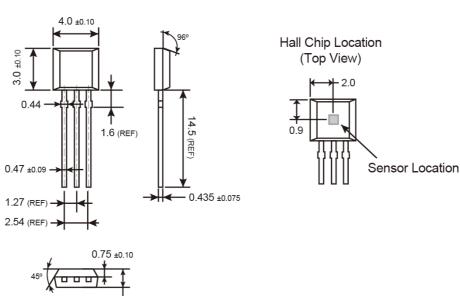
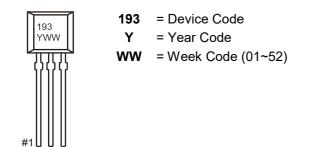



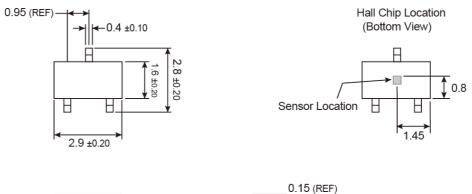
Figure 8. Power Dissipation vs. Temperature

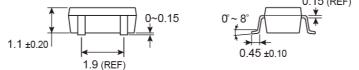


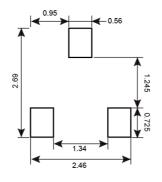
PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

1.52 ±0.10

MARKING DIAGRAM




TO-92S


PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

SOT-23

SUGGESTED PAD LAYOUT (Unit: Millimeters)

MARKING DIAGRAM

193 = Device Code **WW** = Week Code Table

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.