imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TSOT-23

Pin Definition:

- 1. V_{CC}
- 2. Output
- 3. GND

Description

TSH248 Hall-effect sensor is a temperature stable, stress-resistant, micro-power switch. Superior hightemperature performance is made possible through a dynamic offset cancellation that utilizes chopperstabilization. This method reduces the offset voltage normally caused by device over-molding, temperature dependencies and thermal stress.

TSH248 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors and small component geometries.

Features

- CMOS Hall IC Technology
- Solid-State Reliability
- Low power consumption for battery applications
- Operation voltage range from 2.5V~3.5V

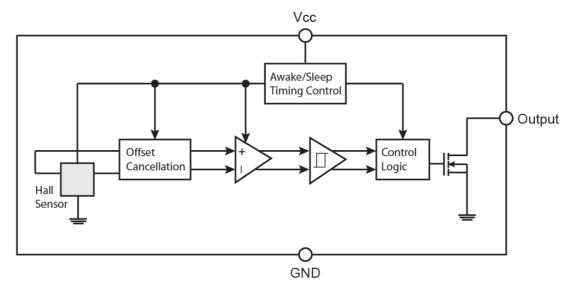
Application

- Solid state switch
- Lid close sensor for power supply devices
- Magnet proximity sensor for reed switch replacement in high duty cycle applications.
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

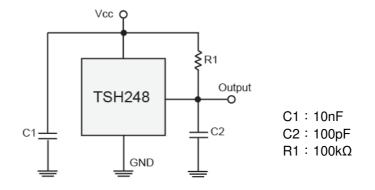
Characteristics	Limit	Value	Unit	
Supply voltage	V _{cc}	5	V	
Output Voltage	V _{OUT}	5	V	
Reverse voltage	V _{CC/OUT}	-0.3	V	
Magnetic flux density		Unlimited	G	
Output current	I _{OUT}	2	mA	
Operating Temperature Range	T _{OPR}	-40 to +85	°C	
Storage temperature range	T _{STG}	-55 to +150	°C	
Maximum Junction Temp	TJ	150	°C	
Thermal Resistance - Junction to Ambient	Rθ _{JA}	543	°C/W	
Thermal Resistance - Junction to Case	Rθ _{JC}	410	°C/W	
Package Power Dissipation	PD	230	mW	

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.


Ordering Information

Part No.	Package	Packing			
TSH248CX RFG	TSOT-23	3kpcs / 7" Reel			

Note: "G" denote for Halogen Free Product



Block Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{CC} protection is not included. For reverse voltage protection, a 100 Ω resistor in series with V_{CC} is recommended.

Typical Application Circuit

COMPLIANCE

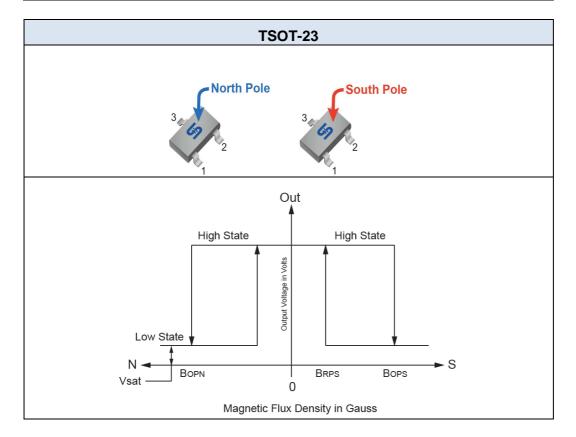
Pb

Electrical Specifications (DC Operating Parameters: T_A=+25°C, V_{CC}=3V)

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Operating	2.5		3.5	V
	Awake State		2.5	4.0	mA
Supply Current	Sleep State		8.0	12	μA
	Average		10	16	μA
Output Low Voltage	I _{OUT} =1mA			0.3	V
Output Leakage Current	Output off			1	μA
Awake Mode Time	Operating		70		μs
Sleep Mode Time	Operating		70		ms
Duty Cycle			0.1		%

Magnetic Specifications

DC Operating Parameters T_A=25 °C, V_{CC}=3.0V


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating B _{OPS}		N pole to branded side, $B > B_{OP}$, V_{OUT} On	6		60	G
Point	B _{OPN}	S pole to branded side, $B > B_{OP}$, V_{OUT} On	-60		-6	G
Release B _{RPS}		N pole to branded side, $B < B_{RP}$, V_{OUT} Off	5		-59	G
Point	B _{RPN}	S pole to branded side, $B < B_{RP}$, V_{OUT} Off	-60		-5	G
Hysteresis	B _{HYS}	BOPx - BRPx		7		G

Note: 1G (Gauss) = 0.1mT (millitesla)

Output Behavior versus Magnetic Pole

DC Operating Parameters: $T_A = -40$ to 85° C, $V_{CC} = 2.5$ V ~ 3.5V							
Parameter	Test condition	OUT					
South pole	B <bop[(-60)~(-6)]< td=""><td colspan="4">Low</td></bop[(-60)~(-6)]<>	Low					
Null or weak magnetic field	B=0 or B <b<sub>RP</b<sub>	Open (Pull-up Voltage)					
North pole	B>Bop(60~6)	Low					

TSH248 Micropower Omni-Polar Hall Effect Switch

Characteristic Performance

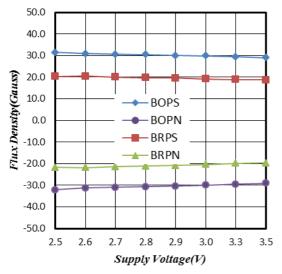


Figure 1. Flux Density vs. Supply Voltage

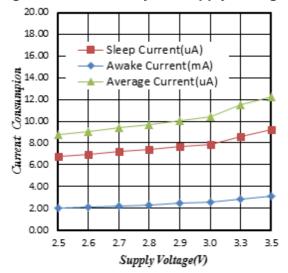


Figure 3. Supply Current vs. Supply Voltage

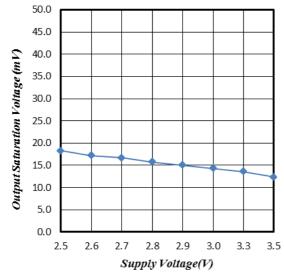
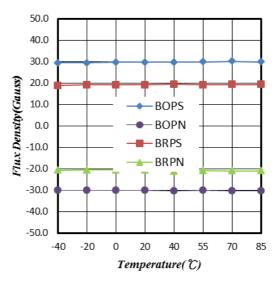



Figure 5. Output Saturation Voltage vs. Supply Voltage

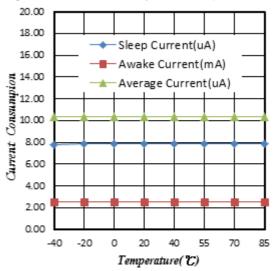


Figure 4. Supply Current vs. Temperature

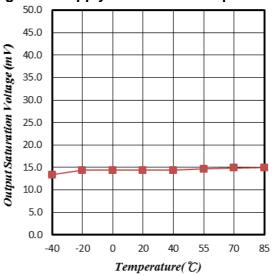


Figure 6. Output Saturation Voltage vs. Temperature

Characteristic Performance

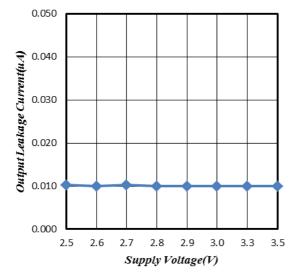
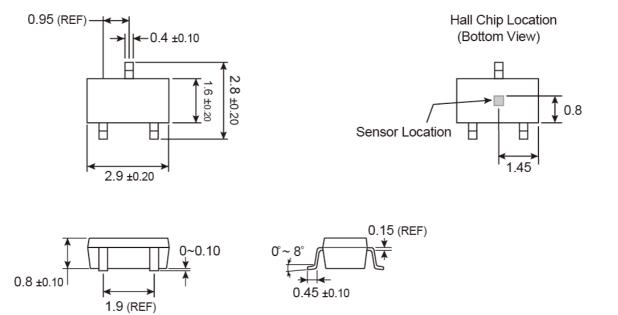



Figure 7. Output Leakage Current vs. Supply Voltage

TSOT-23 Mechanical Drawing

Unit: Millimeters

Marking Diagram

248 = Device Code

WW = Week Code Table

	000.0												
week	1	2	3	4	5	6	7	8	9	10	11	12	13
code	QA	QB	QC	QD	QE	QF	QG	QH	QI	QJ	QK	QL	QM
week	14	15	16	17	18	19	20	21	22	23	24	25	26
code	QN	QO	QP	QQ	QR	QS	QT	QU	QV	QW	QX	QY	QZ
week	27	28	29	30	31	32	33	34	35	36	37	38	39
code	RA	RB	RC	RD	RE	RF	RG	RH	RI	RJ	RK	RL	RM
week	40	41	42	43	44	45	46	47	48	49	50	51	52
code	RN	RO	RP	RQ	RR	RS	RT	RU	RV	RW	RX	RY	RZ

TSH248 Micropower Omni-Polar Hall Effect Switch

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.